Carbon Nanotube Composites (carbon + nanotube_composite)

Distribution by Scientific Domains


Selected Abstracts


Multi-walled carbon nanotube composites with polyacrylate prepared for open-tubular capillary electrochromatography

ELECTROPHORESIS, Issue 19 2010
Jian-Lian Chen
Abstract A new phase containing immobilized carbon nanotubes (CNTs) was synthesized by in situ polymerization of acid-treated multi-walled CNTs using butylmethacrylate (BMA) as the monomer and ethylene dimethacrylate as the crosslinker on a silanized capillary, forming a porous-layered open-tubular column for CEC. Incorporation of CNT nanomaterials into a polymer matrix could increase the phase ratio and take advantage of the easy preparation of an OT-CEC column. The completed BMA-CNT column was characterized by SEM, ATR-IR, and EOF measurements, varying the pH and the added volume organic modifier. In the multi-walled CNTs structure, carboxylate groups were the major ionizable ligands on the phase surface exerting the EOF having electroosmotic mobility, 4.0×104,cm2,V,1,S,1, in the phosphate buffer at pH 2.8 and RSD values (n=5), 3.2, 4.1, and 4.3%, for three replicate capillaries at pH 7.6. Application of the BMA-CNT column in CEC separations of various samples, including nucleobases, nucleosides, flavonoids, and phenolic acids, proved satisfactory upon optimization of the running buffers. Their optima were found in the borate buffers at pH 9.0/50,mM, pH 9.5/10,mM/50% v/v ACN, and pH 9.5/30,mM/10% v/v methanol, respectively. The separations could also be used to assess the relative contributions of electrophoresis and chromatography to the CEC mechanism by calculating the corresponding velocity and retention factors. Discussions about interactions between the probe solutes and the bonded phase included the ,,, interactions, electrostatic repulsion, and hydrogen bonding. Furthermore, a reversed-phase mode was discovered to be involved in the chromatographic retention. [source]


Rheological and thermal properties of poly(ethylene oxide)/multiwall carbon nanotube composites

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 4 2008
T. N. Abraham
Abstract Poly(ethylene oxide) (PEO) based nanocomposites were prepared by the dispersion of multiwall carbon nanotubes (MWCNTs) in aqueous solution. MWCNTs were added up to 4 wt % of the PEO matrix. The dynamic viscoelastic behavior of the PEO/MWCNT nanocomposites was assessed with a strain-controlled parallel-plate rheometer. Prominent increases in the shear viscosity and storage modulus of the nanocomposites were found with increasing MWCNT content. Dynamic and isothermal differential scanning calorimetry studies indicated a significant decrease in the crystallization temperature as a result of the incorporation of MWCNTs; these composites can find applications as crystallizable switching components for shape-memory polymer systems with adjustable switching temperatures. The solid-state, direct-current conductivity was also enhanced by the incorporation of MWCNTs. The dispersion level of the MWCNTs was investigated with scanning electron microscopy. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source]


Polyaniline-multiwalled carbon nanotube composites: Characterization by WAXS and TGA

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 1 2008
T. Jeevananda
Abstract Polyaniline/carboxylated multi-walled carbon nanotube (PAni/c-MWNT) nanocomposites have been synthesized by micellar aided emulsion polymerization with various c-MWNTs compositions, viz., 0.5, 1, 5, and 10 wt %. The microcrystalline parameters such as the nanocrystal size (,N,), lattice strain (g), interplanar distance (dhkl), width of the crystallite size distribution, surface weighted crystal size (Ds), and volume of the ordered regions were calculated from the X-ray data by using two mathematical models, namely the Exponential distribution and Reinhold distribution methods. The effects of heat ageing on the microcrystalline parameters of the PAni/c-MWNT nanocomposites were also studied and the results are correlated. The thermal stability and electrical resistivity of the PAni/c-MWNT nanocomposites were examined with thermogravimetric analysis (TGA) and a conventional two-probe method. The TGA data indicate that the thermal stability of the nanocomposites improved after the incorporation of c-MWNTs. The influence of temperature on the resistivity of the nanocomposites was also measured. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci 2008 [source]


Heterogeneous Electron Transfer and Oxygen Reduction Reaction at Nanostructured Iron(II) Phthalocyanine and Its MWCNTs Nanocomposites

ELECTROANALYSIS, Issue 9 2010
Solomon
Abstract Electron transfer and oxygen reduction dynamics at nanostructured iron(II) phthalocyanine/multi-walled carbon nanotubes composite supported on an edge plane pyrolytic graphite electrode (EPPGE-MWCNT-nanoFePc) platform have been reported. All the electrodes showed the category 3 diffusional behaviour according to the Davies,Compton theoretical framework. Both MWCNTs and MWCNT-nanoFePc showed huge current responses compared to the other electrodes, suggesting the redox processes of trapped redox species within the porous layers of MWCNTs. Electron transfer process is much easier at the EPPGE-MWCNT and EPPGE-MWCNT-nanoFePc compared to the other electrodes. The best response for oxygen reduction reaction was at the EPPGE-MWCNT-nanoFePc, yielding a 4-electron process. [source]


Preparation and properties of plasticized starch/multiwalled carbon nanotubes composites

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 2 2007
Xiaodong Cao
Abstract In this work we have studied the utilization of multiwalled carbon nanotubes (MWCNTs) as filler-reinforcement to improve the performance of plasticized starch (PS). The PS/MWCNTs nanocomposites were successfully prepared by a simple method of solution casting and evaporation. The morphology, thermal behavior, and mechanical properties of the films were investigated by means of scanning electron microscopy, wide-angle X-ray diffraction, differential scanning calorimetry, and tensile testing. The results indicated that the MWCNTs dispersed homogeneously in the PS matrix and formed strong hydrogen bonding with PS molecules. Compared with the pure PS, the tensile strength and Young's modulus of the nanocomposites were enhanced significantly from 2.85 to 4.73 MPa and from 20.74 to 39.18 MPa with an increase in MWCNTs content from 0 to 3.0 wt %, respectively. The value of elongation at break of the nanocomposites was higher than that of PS and reached a maximum value as the MWCNTs content was at 1.0 wt %. Besides the improvement of mechanical properties, the incorporation of MWCNTs into the PS matrix also led to a decrease of water sensitivity of the PS-based materials. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007 [source]


Thermal and morphological characterization of composites prepared by solution crystallization method of high-density polyethylene on carbon nanotubes

POLYMER COMPOSITES, Issue 5 2010
Linghao He
The morphology, nucleation, and crystallization of polyethylene/carbon nanotubes composites prepared by solution crystallization method of high density polyethylene on Multiwall Carbon Nanotubes (MWNTs) are studied. Transmission electron microscopy (TEM) results show that the center stems of MWNTs are decorated with lamellar crystals. The nonisothermal crystallization kinetics of pure PE and PE/MWNTs composites are investigated by differential scanning calorimetry at various cooling rates. It is found that the Avrami analysis modified by Jeziorny and Mo can describe the nonisothermal crystallization process of pure PE and PE/MWNTs very well. The difference in the value of exponent between PE and PE/MWNTs suggests that addition of the MWNTs influences the mechanism of nucleation and the growth of PE crystallites. On one hand, the increasing of temperature corresponding to the maximum rate of crystallization and the onset crystallization temperature and the study of the nucleation activity reveal that the inorganic component (MWNTs) can act as the nucleating agent to facilitate the crystallization of PE in the hybrids. On the other hand, the decreasing degree of crystallinity and the increasing of half-crystallization time imply that the MWNTs networks confine the crystallization of PE. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers [source]


Crystallization and biodegradation of polylactide/carbon nanotube composites

POLYMER ENGINEERING & SCIENCE, Issue 9 2010
Defeng Wu
The crystallization behavior of polylactide/carbon nanotube composites was studied using differential scanning calorimeter and polarized optical microscope. The nucleation mechanisms and the crystallization kinetics were explored. The results show that the presence of nanotubes has nucleating effect on both the melt crystallization and the cold crystallization of PLA. However, the nanotubes also play the role of physical barrier, impeding the crystal growth dynamically. In the experimental range of temperatures, the presence of nanotubes accelerates the melt crystallization, while retards the overall kinetics of the cold crystallization. The biodegradability of the samples with various crystallization histories was then further examined. The results show that the presence of nanotubes reduces the biodegradation rate of PLA, and the amorphous sample shows the highest degradation levels. Moreover, a lower degradation level is observed both on the surface and inside the sample with melt crystallization history in contrast to the one with cold crystallization history. POLYM. ENG. SCI., 50:1721,1733, 2010. © 2010 Society of Plastics Engineers [source]


Preparation and mechanical properties of waterborne polyurethane/carbon nanotube composites

POLYMER COMPOSITES, Issue 5 2009
Cai-Xia Zhao
Waterborne polyurethane (WBPU) and multiwalled carbon nanotubes (CNTs) composite films with 0,4.0 wt% CNTs were prepared by ultrasonic dispersion of carboxylic acid-functionalized CNTs in WBPU followed by emulsion casting process. The elongations at break of the WBPU/CNTs composites increase with the incorporation of CNTs. The tensile strength and crystallinity of the nanocomposite films with lower CNTs contents (<2 wt%) increase obviously; while the tensile strengths of the composites with more CNTs (,2 wt%) decrease, in contrast to the pure PU film. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observations indicated that the CNTs are uniformly dispersed in the composites incorporated with lower CNTs contents (,1.5 wt%). However, aggregation of CNTs increased with increasing CNTs content in the WBPU/CNTs composites, causing the macrophase separation. The dispersion state of the CNTs affects the crystallinity of the PU matrix and the phase separation of the composites, which are two key factors to influence the mechanical properties of the WBPU/CNTs composites. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers [source]