Carbon Nanotube Arrays (carbon + nanotube_array)

Distribution by Scientific Domains


Selected Abstracts


Template Synthesis of Aligned Carbon Nanotube Arrays using Glucose as a Carbon Source: Pt Decoration of Inner and Outer Nanotube Surfaces for Fuel-Cell Catalysts,

ADVANCED FUNCTIONAL MATERIALS, Issue 6 2008
Zhenhai Wen
A facile method is developed to synthesize aligned arrays of open-ended carbon nanotubes (CNTs) via in situ glucose polymerization in the inner pores of anodic aluminum oxide templates under hydrothermal conditions, followed by carbonization at high temperature. Pt nanoparticles are decorated on the surfaces of the as-prepared CNTs using the incipient wet method based on the use of NaBH4 as a reductant. Characterization of the resulting structures by transmission electron microscopy and field-emission scanning electron microscopy demonstrates that the Pt nanoparticles are anchored on both the inner and outer walls of CNTs, thus giving rise to a shell,core,shell-like nanotube composite. The electrocatalytic properties of the Pt,CNT,Pt electrodes are investigated for methanol oxidation by cyclic voltammetry and chronoamperometric measurements. It is found that the hybrid electrodes show superior catalytic performance compared to commercial carbon-black-supported Pt. The increased catalytic efficiency of Pt might be a result of the unique morphology of these structures. [source]


Thermomechanical and Thermal Contact Characteristics of Bismuth Telluride Films Electrodeposited on Carbon Nanotube Arrays

ADVANCED MATERIALS, Issue 42 2009
Himanshu Mishra
A scalable electrochemical process for addressing the thermomechanical compliance and contact resistance at metal/thermoelectric (M/TE) interfaces by integrating TE films with carbon nanotube (CNT) arrays is presented. Thermomechanical compliance and thermal contact characteristics of TE/CNT/M and TE/M contacts are compared. A process-flow for patterned electrodeposition of TE films on CNT arrays coated surfaces is also demonstrated. [source]


Fully Transparent Thin-Film Transistors Based on Aligned Carbon Nanotube Arrays and Indium Tin Oxide Electrodes,

ADVANCED MATERIALS, Issue 5 2009
Sunkook Kim
Fully transparent thin-film transistors (TFTs) based on well-aligned single-walled carbon nanotube (SWCNT) arrays with indium tin oxide (ITO) electrodes are achieved. The fully transparent SWCNT-TFTs could be attractive candidates for future flexible or transparent electronics. [source]


Mechanical Buckling: Mechanics, Metrology, and Stretchable Electronics

ADVANCED FUNCTIONAL MATERIALS, Issue 10 2009
Dahl-Young Khang
Abstract Mechanical buckling usually means catastrophic failure in structural mechanics systems. However, controlled buckling of thin films on compliant substrates has been used to advantage in diverse fields such as micro-/nanofabrication, optics, bioengineering, and metrology as well as fundamental mechanics studies. In this Feature Article, a mechanical buckling model is presented, which sprang, in part, from the buckling study of high-quality, single-crystalline nanomaterials. To check the mechanical-buckling phenomenon down to the nano-/molecular scale, well-aligned single-walled carbon nanotube arrays and cross linked carbon-based monolayers are transferred from growth substrate onto elastomeric substrate and then they are buckled into well-defined shapes that are amenable to quantitative analysis. From this nano- or molecular-scale buckling, it is shown that the mechanical moduli of nanoscale materials can easily be determined, even using a model based on continuum mechanics. In addition, buckling phenomena can be utilized for the determination of mechanical moduli of organic functional materials such as poly(3-hexylthiophene) (P3HT) and P3HT/6,6-phenyl-C61 -butyric acid methyl ester (PCBM) composite, which are widely used for organic transistors and organic photovoltaics. The results provide useful information for the realization of flexible and/or stretchable organic electronics. Finally, the fabrication and applications of "wavy, stretchable" single-crystal Si electronics on elastomeric substrates are demonstrated. [source]