| |||
Carbon Input (carbon + input)
Selected AbstractsPlant functional traits and soil carbon sequestration in contrasting biomesECOLOGY LETTERS, Issue 5 2008Gerlinde B. De Deyn Abstract Plant functional traits control a variety of terrestrial ecosystem processes, including soil carbon storage which is a key component of the global carbon cycle. Plant traits regulate net soil carbon storage by controlling carbon assimilation, its transfer and storage in belowground biomass, and its release from soil through respiration, fire and leaching. However, our mechanistic understanding of these processes is incomplete. Here, we present a mechanistic framework, based on the plant traits that drive soil carbon inputs and outputs, for understanding how alteration of vegetation composition will affect soil carbon sequestration under global changes. First, we show direct and indirect plant trait effects on soil carbon input and output through autotrophs and heterotrophs, and through modification of abiotic conditions, which need to be considered to determine the local carbon sequestration potential. Second, we explore how the composition of key plant traits and soil biota related to carbon input, release and storage prevail in different biomes across the globe, and address the biome-specific mechanisms by which plant trait composition may impact on soil carbon sequestration. We propose that a trait-based approach will help to develop strategies to preserve and promote carbon sequestration. [source] The underestimated importance of belowground carbon input for forest soil animal food websECOLOGY LETTERS, Issue 8 2007Melanie M. Pollierer Abstract The present study investigated the relative importance of leaf and root carbon input for soil invertebrates. Experimental plots were established at the Swiss Canopy Crane (SCC) site where the forest canopy was enriched with 13C depleted CO2 at a target CO2 concentration of c. 540 p.p.m. We exchanged litter between labelled and unlabelled areas resulting in four treatments: (i) leaf litter and roots labelled, (ii) only leaf litter labelled, (iii) only roots labelled and (iv) unlabelled controls. In plots with only 13C-labelled roots most of the soil invertebrates studied were significantly depleted in 13C, e.g. earthworms, chilopods, gastropods, diplurans, collembolans, mites and isopods, indicating that these taxa predominantly obtain their carbon from belowground input. In plots with only 13C-labelled leaf litter only three taxa, including, e.g. juvenile Glomeris spp. (Diplopoda), were significantly depleted in 13C suggesting that the majority of soil invertebrates obtain its carbon from roots. This is in stark contrast to the view that decomposer food webs are based on litter input from aboveground. [source] Soil organic carbon storage in grazing pasture converted from forest on Andosol soilGRASSLAND SCIENCE, Issue 4 2007Shigeo Takahashi Abstract In order to clarify the effect of land-use change from forest to grazing pasture on the organic carbon storage in Andosol soil, the Rothamsted carbon turnover model for volcanic soil was applied to a pasture situated at the National Livestock Breeding Center (37°09,N, 140°03,E). The top 25-cm soil layer was considered to be an active soil carbon pool. The carbon storage in the soils of native forest surrounding the pastures ranged 111,163 t C ha,1 with an average of 133 t C ha,1, which was adjusted according to an equivalent soil weight of pasture. The pasture soil carbon stocks ranged 88,135 t C ha,1, with variations according to site and/or pasture age. The carbon inputs to the soil through the above- and below-ground dead material from pasture plants and cattle feces were estimated to be 1.1, 1.8 and 0.9 t C ha,1 year,1, respectively. As the model outputs of 14C content of the soil, which is an index of carbon dating corresponding to nuclear weapons testing, showed a relatively close agreement with the observations, the modeling was acceptable for the purpose of predicting the turnover of organic carbon in Andosol soil. The model simulation demonstrated that, in order to maintain the average forest carbon level, 3,4 t ha,1 year,1 of the organic carbon input would be needed. These inputs would be provided in a grazing pasture producing 8,9 t ha,1 year,1 of above-ground dry matter. [source] Dissolved and total organic and inorganic carbon in some British riversAREA, Issue 1 2008Andy Baker Rivers transport both organic and inorganic carbon from their sources to the sea. Results of ~800 organic and inorganic analyses from various British rivers of contrasting size and land use are presented here: (1) the headwater River Tern, a rural river of 852 km2 catchment; (2) the Ouseburn, a small urban 55 km2 catchment; (3) the River Tyne, a larger river system of ~3000 km2 catchment; (4) a spatial survey from 205 sample sites on ~60 rivers from SW England. We found that, with the exception of peat-rich headwaters, DIC concentration is always greater than DOC. DIC is primarily in the form HCO3,, with DIC concentrations highest in highly urbanised catchments, typically greater than those observed in catchments with carbonate bedrock, demonstrating a significant and previously unrecognised anthropogenic inorganic carbon input to urban rivers. [source] Heterotrophy in Tropical Scleractinian CoralsBIOLOGICAL REVIEWS, Issue 1 2009Fanny Houlbrèque Abstract The dual character of corals, that they are both auto- and heterotrophs, was recognized early in the twentieth Century. It is generally accepted that the symbiotic association between corals and their endosymbiotic algae (called zooxanthellae) is fundamental to the development of coral reefs in oligotrophic tropical oceans because zooxanthellae transfer the major part of their photosynthates to the coral host (autotrophic nutrition). However, numerous studies have confirmed that many species of corals are also active heterotrophs, ingesting organisms ranging from bacteria to mesozooplankton. Heterotrophy accounts for between 0 and 66% of the fixed carbon incorporated into coral skeletons and can meet from 15 to 35% of daily metabolic requirements in healthy corals and up to 100% in bleached corals. Apart from this carbon input, feeding is likely to be important to most scleractinian corals, since nitrogen, phosphorus, and other nutrients that cannot be supplied from photosynthesis by the coral's symbiotic algae must come from zooplankton capture, particulate matter or dissolved compounds. A recent study showed that during bleaching events some coral species, by increasing their feeding rates, are able to maintain and restore energy reserves. This review assesses the importance and effects of heterotrophy in tropical scleractinian corals. We first provide background information on the different food sources (from dissolved organic matter to meso- and macrozooplankton). We then consider the nutritional inputs of feeding. Finally, we review feeding effects on the different physiological parameters of corals (tissue composition, photosynthesis and skeletal growth). [source] Plant functional traits and soil carbon sequestration in contrasting biomesECOLOGY LETTERS, Issue 5 2008Gerlinde B. De Deyn Abstract Plant functional traits control a variety of terrestrial ecosystem processes, including soil carbon storage which is a key component of the global carbon cycle. Plant traits regulate net soil carbon storage by controlling carbon assimilation, its transfer and storage in belowground biomass, and its release from soil through respiration, fire and leaching. However, our mechanistic understanding of these processes is incomplete. Here, we present a mechanistic framework, based on the plant traits that drive soil carbon inputs and outputs, for understanding how alteration of vegetation composition will affect soil carbon sequestration under global changes. First, we show direct and indirect plant trait effects on soil carbon input and output through autotrophs and heterotrophs, and through modification of abiotic conditions, which need to be considered to determine the local carbon sequestration potential. Second, we explore how the composition of key plant traits and soil biota related to carbon input, release and storage prevail in different biomes across the globe, and address the biome-specific mechanisms by which plant trait composition may impact on soil carbon sequestration. We propose that a trait-based approach will help to develop strategies to preserve and promote carbon sequestration. [source] Exoenzyme activities as indicators of dissolved organic matter composition in the hyporheic zone of a floodplain riverFRESHWATER BIOLOGY, Issue 8 2010SANDRA M. CLINTON Summary 1. We measured the hyporheic microbial exoenzyme activities in a floodplain river to determine whether dissolved organic matter (DOM) bioavailability varied with overlying riparian vegetation patch structure or position along flowpaths. 2. Particulate organic matter (POM), dissolved organic carbon (DOC), dissolved oxygen (DO), electrical conductivity and temperature were sampled from wells in a riparian terrace on the Queets River, Washington, U.S.A. on 25 March, 15 May, 20 July and 09 October 1999. Dissolved nitrate, ammonium and soluble reactive phosphorus were also collected on 20 July and 09 October 1999. Wells were characterised by their associated overlying vegetation: bare cobble/young alder, mid-aged alder (8,20 years) and old alder/old-growth conifer (25 to >100 years). POM was analysed for the ash-free dry mass and the activities of eight exoenzymes (,-glucosidase, ,-glucosidase, , -N-acetylglucosaminidase, xylosidase, phosphatase, leucine aminopeptidase, esterase and endopeptidase) using fluorogenic substrates. 3. Exoenzyme activities in the Queets River hyporheic zone indicated the presence of an active microbial community metabolising a diverse array of organic molecules. Individual exoenzyme activity (mean ± standard error) ranged from 0.507 ± 0.1547 to 22.8 ± 5.69 ,mol MUF (g AFDM),1 h,1, was highly variable among wells and varied seasonally, with the lowest rates occurring in March. Exoenzyme activities were weakly correlated with DO, DOC and inorganic nutrient concentrations. 4. Ratios of leucine aminopeptidase : ,-glucosidase were low in March, May and October and high in July, potentially indicating a switch from polysaccharides to proteins as the dominant component of microbial metabolism. 5. Principal components analysis indicated that there were patch effects and that these effects were strongest in the summer. 6. DOM degradation patterns did not change systematically along hyporheic flowpaths but varied with overlying forest patch type in the Queets River hyporheic zone, suggesting that additional carbon inputs exist. We hypothesise that the most likely input is the downward movement of DOM from overlying riparian soils. Understanding this movement of DOM from soils to subsurface water is essential for understanding both the hyporheic metabolism and the carbon budget of streams and rivers. [source] The European carbon balance.GLOBAL CHANGE BIOLOGY, Issue 5 2010Part 3: forests Abstract We present a new synthesis, based on a suite of complementary approaches, of the primary production and carbon sink in forests of the 25 member states of the European Union (EU-25) during 1990,2005. Upscaled terrestrial observations and model-based approaches agree within 25% on the mean net primary production (NPP) of forests, i.e. 520±75 g C m,2 yr,1 over a forest area of 1.32 × 106 km2 to 1.55 × 106 km2 (EU-25). New estimates of the mean long-term carbon forest sink (net biome production, NBP) of EU-25 forests amounts 75±20 g C m,2 yr,1. The ratio of NBP to NPP is 0.15±0.05. Estimates of the fate of the carbon inputs via NPP in wood harvests, forest fires, losses to lakes and rivers and heterotrophic respiration remain uncertain, which explains the considerable uncertainty of NBP. Inventory-based assessments and assumptions suggest that 29±15% of the NBP (i.e., 22 g C m,2 yr,1) is sequestered in the forest soil, but large uncertainty remains concerning the drivers and future of the soil organic carbon. The remaining 71±15% of the NBP (i.e., 53 g C m,2 yr,1) is realized as woody biomass increments. In the EU-25, the relatively large forest NBP is thought to be the result of a sustained difference between NPP, which increased during the past decades, and carbon losses primarily by harvest and heterotrophic respiration, which increased less over the same period. [source] Global climate change and soil carbon stocks; predictions from two contrasting models for the turnover of organic carbon in soilGLOBAL CHANGE BIOLOGY, Issue 1 2005Chris Jones Abstract Enhanced release of CO2 to the atmosphere from soil organic carbon as a result of increased temperatures may lead to a positive feedback between climate change and the carbon cycle, resulting in much higher CO2 levels and accelerated global warming. However, the magnitude of this effect is uncertain and critically dependent on how the decomposition of soil organic C (heterotrophic respiration) responds to changes in climate. Previous studies with the Hadley Centre's coupled climate,carbon cycle general circulation model (GCM) (HadCM3LC) used a simple, single-pool soil carbon model to simulate the response. Here we present results from numerical simulations that use the more sophisticated ,RothC' multipool soil carbon model, driven with the same climate data. The results show strong similarities in the behaviour of the two models, although RothC tends to simulate slightly smaller changes in global soil carbon stocks for the same forcing. RothC simulates global soil carbon stocks decreasing by 54 Gt C by 2100 in a climate change simulation compared with an 80 Gt C decrease in HadCM3LC. The multipool carbon dynamics of RothC cause it to exhibit a slower magnitude of transient response to both increased organic carbon inputs and changes in climate. We conclude that the projection of a positive feedback between climate and carbon cycle is robust, but the magnitude of the feedback is dependent on the structure of the soil carbon model. [source] |