Carbon Chain Length (carbon + chain_length)

Distribution by Scientific Domains


Selected Abstracts


Effect of Carbon Chain Length in the Substituent of PCBM-like Molecules on Their Photovoltaic Properties

ADVANCED FUNCTIONAL MATERIALS, Issue 9 2010
Guangjin Zhao
Abstract A series of [6,6]-phenyl-C61 -butyric acid methyl ester (PCBM)-like fullerene derivatives with the butyl chain in PCBM changing from 3 to 7 carbon atoms, respectively (F1,F5), are designed and synthesized to investigate the relationship between photovoltaic properties and the molecular structure of fullerene derivative acceptors. F2 with a butyl chain is PCBM itself for comparison. Electrochemical, optical, electron mobility, morphology, and photovoltaic properties of the molecules are characterized, and the effect of the alkyl chain length on their properties is investigated. Although there is little difference in the absorption spectra and LUMO energy levels of F1,F5, an interesting effect of the alkyl chain length on the photovoltaic properties is observed. For the polymer solar cells (PSCs) based on P3HT as donor and F1,F5, respectively, as acceptors, the photovoltaic behavior of the P3HT/F1 and P3HT/F4 systems are similar to or a little better than that of the P3HT/PCBM device with power conversion efficiencies (PCEs) above 3.5%, while the performances of P3HT/F3 and P3HT/F5-based solar cells are poorer, with PCE values below 3.0%. The phenomenon is explained by the effect of the alkyl chain length on the absorption spectra, fluorescence quenching degree, electron mobility, and morphology of the P3HT/F1,F5 (1:1, w/w) blend films. [source]


Structure,activity relationships for acute and chronic toxicity of alcohol ether sulfates

ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 3 2000
Scott D. Dyer
Abstract Acoholethersulfates(AES)areanionicsurfactantscommonlyusedinconsumerproducts. Commercial AES alkyl chain lengths range from C12 to C18, with ethoxylate (EO) units ranging from 1 to 5. Alkyl sulfate is a special case of AES with no EO units. Acute and chronic toxicity tests using Ceriodaphnia dubia via a novel flowthrough method were conducted with 18 AES compounds to derive SARs for effects assessment. In general, acute toxicity (48-h LC50) increased with increased alkyl carbon chain length and decreased with increased numbers of EO units. Parabolic structure,chronic (7-d) toxicity relationships were observed for endpoints such as the no-observed-effect concentration, lowest-observed-effect concentration, maximum acceptable toxicant concentration, EC20, and EC50. A linear relationship of the fractional negative-charged surface area (FNSA-3) with acute toxicity was also determined. FNSA-3 refers primarily to the polar head group of AES and secondarily to the alkyl chain. Seventy percent of the variance in the chronic data was addressed with a quadratic equation relating toxicity to alkyl chain length and EO units. Alternatively, the molecular descriptors FNSA-3 and S3P (3,p, which is the simple, third-order path index) were also found to address most of the data nonlinearity. A chronic test conducted with a mixture of four AES components indicated additivity, leading to the support of the performance of an effects assessment of AES as a mixture. [source]


Molecular-feature domains with posterodorsal,anteroventral polarity in the symmetrical sensory maps of the mouse olfactory bulb: mapping of odourant-induced Zif268 expression

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 10 2002
Koichiro Inaki
Abstract Individual glomeruli in the mammalian olfactory bulb presumably represent a single type of odourant receptor. Thus, the glomerular sheet provides odourant receptor maps at the surface of the olfactory bulb. To understand the basic spatial organization of the olfactory sensory maps, we first compared the spatial distribution of odourant-induced responses measured by the optical imaging of intrinsic signals with that detected immunohistochemically by expressions of Zif268, one of the immediate early gene products in juxtaglomerular cells. In the dorsal surface of the bulb, we detected a clear correlation in the spatial pattern between these responses. In addition, the molecular-feature domains and their polarities (spatial shifts of responses with an increase in carbon chain length) that were defined by the optical imaging method could be also detected by the Zif268 mapping method. We then mapped the Zif268 signals over the entire olfactory bulb using a homologous series of fatty acids and aliphatic alcohols as stimulus odourants. We superimposed the Zif268 signals onto the standard unrolled map with the help of cell adhesion molecule compartments. Each odourant typically elicited two pairs of clusters of dense Zif268 signals. The results showed that molecular-feature domains and their polarities were arranged symmetrically at stereotypical positions in a mirror-image fashion between the lateral and the medial sensory maps. The polarity of each domain was roughly in parallel with the posterodorsal,anteroventral axis that was defined by the cell adhesion molecule compartments. These results suggest that the molecular-feature domain with its fixed polarity is one of the basic structural units in the spatial organization of the odourant receptor maps in the olfactory bulb. [source]


Study of the solubilization of gliclazide by aqueous micellar solutions

JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 4 2003
Khouloud A. Alkhamis
Abstract It was of interest to increase the solubility of gliclazide in aqueous media. Therefore, solubilization of gliclazide in a variety of surfactants was investigated. Anionic and cationic surfactants exhibited dramatic solubilizing ability for gliclazide, whereas nonionic surfactants showed significantly lower solubilizing ability. It was found that gliclazide solubility increases with increasing the carbon chain length of cationic surfactants and decreases with increasing the carbon chain length of anionic surfactants. The solubilization data were analyzed on the basis of a pseudo-phase model with gliclazide exhibiting moderate partition coefficients into the micellar phase. The possible sites of solubilization of gliclazide in the micelle were examined by studying the effect of NaCl on solubilization and by comparing the absorption spectra of gliclazide in different solvents. The results obtained from these two experiments indicated that gliclazide is solubilized mainly in the inner core of the cationic surfactant micelles and in the outer regions of the anionic surfactant micelles. © 2003 Wiley-Liss, Inc. and the American Pharmaceutical Association J Pharm Sci 92:839,846, 2003 [source]


Influence of fatty acid additives on the tribological performance of sunflower oil

LUBRICATION SCIENCE, Issue 9 2010
Patrick Baumgart
Abstract Vegetable oils are potential substitutes for petroleum-based lubricants because they are environmentally friendly, renewable, less toxic and readily biodegradable. The addition of free fatty acids has been shown to increase the lubrication performance of vegetable oils at elevated temperatures. The purpose of this study was to evaluate the relationship between the length of the carbon chain in the fatty acid and its effectiveness as an additive for a range of elevated temperatures. Stearic, arachidic and behenic fatty acid additives were added to commercial sunflower oil. All fatty acid additives were shown to be effective in lowering the wear rate and coefficient of friction in ball-on-disc tribological tests. The overall carbon chain length was not observed to have a consistent influence on the effectiveness of the additive. All additives were less effective at temperatures above 100°C. Copyright © 2010 John Wiley & Sons, Ltd. [source]


Chemotopic odorant coding in a mammalian olfactory system,

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 1 2007
Brett A. Johnson
Abstract Systematic mapping studies involving 365 odorant chemicals have shown that glomerular responses in the rat olfactory bulb are organized spatially in patterns that are related to the chemistry of the odorant stimuli. This organization involves the spatial clustering of principal responses to numerous odorants that share key aspects of chemistry such as functional groups, hydrocarbon structural elements, and/or overall molecular properties related to water solubility. In several of the clusters, responses shift progressively in position according to odorant carbon chain length. These response domains appear to be constructed from orderly projections of sensory neurons in the olfactory epithelium and may also involve chromatography across the nasal mucosa. The spatial clustering of glomerular responses may serve to "tune" the principal responses of bulbar projection neurons by way of inhibitory interneuronal networks, allowing the projection neurons to respond to a narrower range of stimuli than their associated sensory neurons. When glomerular activity patterns are viewed relative to the overall level of glomerular activation, the patterns accurately predict the perception of odor quality, thereby supporting the notion that spatial patterns of activity are the key factors underlying that aspect of the olfactory code. A critical analysis suggests that alternative coding mechanisms for odor quality, such as those based on temporal patterns of responses, enjoy little experimental support. J. Comp. Neurol. 503:1,34, 2007. © 2007 Wiley-Liss, Inc. [source]


Properties of phenol,formaldehyde resin modified with organic acid esters

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 5 2008
Rados, aw Mirski
Abstract Properties of liquid and cured phenol,formaldehyde (PF) resin modified with esters were analyzed in this study. Esters with different carbon chain lengths, both in the acid and alcohol groups, were applied in the experiments. It was found that the modification of phenolic resin with applied esters does not deteriorate its pot life at the temperature of 20°C. It results in an increase of its reactivity at higher temperatures, manifested in the shortening of gel time at 130°C and a decrease of activation energy. Results of FTIR tests of polycondensed modified PF resin showed that products of alkali hydrolysis of esters not only catalyze the curing reaction of resin, but also become embedded in its structure. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source]