Carbazole Unit (carbazole + unit)

Distribution by Scientific Domains


Selected Abstracts


Tuning the Energy Level and Photophysical and Electroluminescent Properties of Heavy Metal Complexes by Controlling the Ligation of the Metal with the Carbon of the Carbazole Unit,

ADVANCED FUNCTIONAL MATERIALS, Issue 4 2007
L. Yang
Abstract Four novel IrIII and PtII complexes with cyclometalated ligands bearing a carbazole framework are prepared and characterized by elemental analysis, NMR spectroscopy, and mass spectrometry. Single-crystal X-ray diffraction studies of complexes 1, 3, and 4 reveal that the 3- or 2-position C atom of the carbazole unit coordinates to the metal center. The difference in the ligation position results in significant shifts in the emission spectra with the changes in wavelength being 84,nm for the Ir complexes and 63,nm for the Pt complexes. The electrochemical behavior and photophysical properties of the complexes are investigated, and correlate well with the results of density functional theory (DFT) calculations. Electroluminescent devices with a configuration of ITO/NPB/CBP:dopant/BCP/AlQ3/LiF/Al can attain very high efficiencies. [source]


Synthesis and characterization of imine-coupled polyphenols containing carbazole units

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 3 2009
smet Kaya
Abstract Imine coupled phenolic monomers containing carbazole unit were synthesized in four steps. The monomers were polymerized via oxidative polycondensation by air as oxidant in an aqueous alkaline medium at 50°C. The structures of compounds were confirmed by ultraviolet,visible (UV,vis), Fourier transform infrared, and 1H- and 13C-NMR techniques. The conductivity measurements of these polymers were made by the four-point probe technique and iodine was used as doping agent. The highest occupied molecular orbital, the lowest unoccupied molecular orbital, and electrochemical and optical band gap values were calculated by the results of the UV,vis and the cyclic voltammetry measurement, respectively. The number-average molecular weight, weight-average molecular weight, and polydispersity index values were determined by the size exclusion chromatography technique. Also, thermal behavior of these polymers was determined by thermogravimetric/differential thermal analysis measurements in a N2 atmosphere between 20 and 1000°C. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 [source]


Theoretical studies on the electronic and optical properties of two new alternating fluorene/carbazole copolymers

JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 10 2005
Li Yang
Abstract Poly(fluorene)-type materials are widely used in polymer-based emitting devices. During operation there appears, however, an additional emission peak at around 2.3 eV, leading to both a color instability and reduced efficiency. The incorporation of the carbazole units has been proven to efficiently suppress the keto defect emission. In this contribution, we apply quantum-chemical techniques to investigate two series of alternating fluorene/carbazole oligomers and copolymers poly[2,7-(N-(2-methyl)-carbazole)- co - alt -2,7-m(9,9-dimethylfluorene)], namely, PFmCz (m = 1,2) and gain a detailed understanding of the influence of carbazole units on the electronic and optical properties of fluorene derivatives. The electronic properties of the neutral molecules, HOMO-LUMO gaps (,H-L), in addition to the positive and negative ions, are studied using B3LYP functional. The lowest excitation energies (Egs) and the maximal absorption wavelength ,abs of PFmCz (m = 1,2) are studied, employing the time-dependent density functional theory (TD-DFT). The properties of the two copolymers, such as ,H-L, Eg, IPs, and EAs were obtained by extrapolating those of the oligomers to the inverse chain length equal to zero (1/n = 0). The outcomes showed that the carbazole unit is a good electron-donating moiety for electronic materials, and the incorporation of carbazole into the polyfluorene (PF) backbone resulted in a broadened energy gap and a blue shift of both the absorption and photoluminescence emission peaks. Most importantly, the HOMO energies of PF1Cz and PF2Cz are both a higher average (0.4 eV) than polyfluorene (PF), which directly results in the decreasing of IPs of about 0.2 eV more than PF, indicating that the carbazole units have significantly improved the hole injection properties of the copolymers. In addition, the energy gap tends to broaden and the absorption and emission peaks are gradually blue-shifted to shorter wavelengths with an increase in the carbazole content in the copolymers. This is due to the interruption of the longer conjugation length of the backbone in the (F1Cz)n series. © 2005 Wiley Periodicals, Inc. J Comput Chem 26: 969,979, 2005 [source]


Synthesis and characterization of polyfluorenevinylene with cyano group and carbazole unit

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 23 2009
Suhee Song
Abstract The present investigation deals with the synthesis, characterization, and EL properties of new polyfluorenevinylenes, CzCNPFVs, with cyano-substituted vinylene unit and carbazole pendant. In CzCNPFVs, synthesized by the Knoevenagel condensation, the carbazole pendant was introduced to improve the efficiency of reported CNPFV. The PL emission spectra of the CzCNPFVs in chloroform solution show maximum peaks at 476,479 nm. In thin films, maximum peaks of the CzCNPFVs appeared at 501,504 nm, red-shifted around 25 nm as compared to those in solution. The emission maxima of the EL spectra of the polymers appear at around 496,504 nm. The maximum luminescence (Lmax) of CzCNPFV2 of the device with the configuration of ITO/PEDOT/CzCNPFVs/Ca/Al is 1724 cd/m2 at 8 V. The maximum luminescence efficiency of CzCNPFV1 is 0.18 cd/A. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6540,6551, 2009 [source]


PCPP derivatives containing carbazole pendant as hole transporting moiety for efficient blue electroluminescence

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 5 2009
Jinwoo Kim
Abstract The syntheses and characterization of poly((2,6-(4,4-bis(4-((2-ethylhexyl)oxy)phenyl)-4H -cyclopenta[def]phenanthrene))- co -(2,6-(4,4-bis(4-(((9-carbazolyl)hexyl)oxy)phenyl))-4H- cyclopenta[def]phenanthrene)) (BCzPh-PCPPs) and poly((2,6-(4,4-bis(4-((2-ethylhexyl)oxy)phenyl)-4H -cyclopenta[def]phenanthrene))- co -(2,6-(4-(4-(((9-carbazolyl)hexyl)oxy)phenyl)-4-(4-((2-ethylhexyl)oxy)phenyl)-4H- cyclopenta[def]phenanthrene))) (CzPh-PCPPs), with carbazole unit as pendants, are presented. The carbazole moiety, which can improve the hole injection ability, was introduced as a pendant on the PCPP backbone. The devices of the polymers with the configurations of ITO/PEDOT:PSS/polymers/Ca/Al generate EL emission with maximum peaks at 400,450 nm, CIE coordinates of (x = 0.11,0.29, y = 0.11,0.33), low turn-on voltages of 4,6 V, maximum brightness of 60,810 cd/m2, and luminescence efficiencies of 0.04,0.22 cd/A. The PL spectra of CzPh-PCPPs films did not show any peak at around 550 nm, which corresponds to keto defect or aggregate/excimer formation, even after annealing for 30 h at 150 °C in air. Out of the series, CzPh-PCPP1 (PCPP derivative with 10% of carbazole moiety as pendant) shows blue emission with the maximum brightness of 810 cd/m2 at 9 V, and the highest luminescence efficiency of 0.22 cd/A at 395 mA/cm2. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1327,1342, 2009 [source]


Tris-Cyclometalated Iridium(III) Complexes of Carbazole(fluorenyl)pyridine Ligands: Synthesis, Redox and Photophysical Properties, and Electrophosphorescent Light-Emitting Diodes

CHEMISTRY - A EUROPEAN JOURNAL, Issue 5 2007
Sylvia Bettington Dr.
Abstract Using ligands synthesized by Suzuki cross-coupling methodology, new phosphorescent homoleptic tris-cyclometalated complexes have been obtained, namely fac -[Ir(Cz-2-FlnPy)3] (1,d,f) and fac -[Ir(Cz-3-FlnPy)3] (2,d,f), which are solution-processible triplet emitters (Cz denotes N -hexylcarbazole, n is the number of 9,9,-dihexylfluorene (Fl) units (n=0,1,2) and Py is pyridine). In all cases, Py and Fl are substituted at the 2- and 2,7-positions, respectively, and Cz moieties are substituted by either Py or Fl at the 2- or 3-positions, in series 1 and 2, respectively. The oxidation potential of 1,d studied by cyclic voltammetry (=0.14,V, versus Ag/AgNO3, CH2Cl2) is less positive (i.e. raised HOMO level) compared to that of the isomer 2,d (=0.30,V), where the Cz-nitrogen is meta to the Ir center. Ligand-centered oxidations occur at more positive potentials, leading to 7+ oxidation states with good chemical reversibility and electrochemical quasi-reversibility, for example, for 2,f =0.45 (1e), 0.95 (3e), 1.24,V (3e). Striking differences are seen in the solution-state photophysical data between complexes [Ir(Cz-2-Py)3] (1,d) and [Ir(Cz-3-Py)3] (2,d), in which the Cz moiety is bonded directly to the metal center: for the latter there is an 85,nm blue-shift in emission, a decrease in the luminescence lifetime and an increase in the PLQY value. Organic light emitting devices were made by spin-coating using polyspirobifluorene:bis(triphenyl)diamine (PSBF:TAD) copolymer as host and the complexes 1,d or 2,d as dopants. Turn-on voltages are low (3,4,V). With 1,d orange light is emitted at ,max=590,nm with an EQE of 1.3,% (at 7.5,mA,cm,2) and an emission intensity (luminance) of 4354,cd,m,2 (at 267,mA,m,2). The green emission from 2,d devices (,max=500,nm) is due to the reduced electron-donating ability of the carbazole unit in 2,d. Recording the EL spectra of the 1,d device at 6,V (current density, 100,mA,cm,2) established that the time to half brightness was about 9,h under continuous operation with no change in the spectral profile, confirming the high chemical stability of the complex. [source]


Control of Charge Transport in Iridium(III) Complex-Cored Carbazole Dendrimers by Generation and Structural Modification

ADVANCED FUNCTIONAL MATERIALS, Issue 2 2009
Salvatore Gambino
Abstract Here, the charge transporting properties of a family of highly phosphorescent iridium(III) complex-cored carbazole dendrimers designed to have improved charge transport by incorporating carbazole units into the dendrons are studied. Firstly, the effect of the dendrimer generation and the role of dendron for materials with one dendron per ligand of the core are considered. It is shown, in contrast to previously reported light-emitting dendrimers, that in this case the carbazolyl-based dendrons have an active role in charge transport. Next, the effect on the charge transport of attaching two dendrons per ligand to the dendrimer core is explored. In this latter case, for the so called "double dendron" material a highly non-dispersive charge transport behavior is observed, together with a time-of-flight mobility of the order of 10,3,cm2 V,1,s,1. Furthermore the lowest energetic disorder parameter (,) ever reported for a solution-processed conjugated organic material is found, ,,< ,20 meV. [source]


Synthesis and characterization of imine-coupled polyphenols containing carbazole units

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 3 2009
smet Kaya
Abstract Imine coupled phenolic monomers containing carbazole unit were synthesized in four steps. The monomers were polymerized via oxidative polycondensation by air as oxidant in an aqueous alkaline medium at 50°C. The structures of compounds were confirmed by ultraviolet,visible (UV,vis), Fourier transform infrared, and 1H- and 13C-NMR techniques. The conductivity measurements of these polymers were made by the four-point probe technique and iodine was used as doping agent. The highest occupied molecular orbital, the lowest unoccupied molecular orbital, and electrochemical and optical band gap values were calculated by the results of the UV,vis and the cyclic voltammetry measurement, respectively. The number-average molecular weight, weight-average molecular weight, and polydispersity index values were determined by the size exclusion chromatography technique. Also, thermal behavior of these polymers was determined by thermogravimetric/differential thermal analysis measurements in a N2 atmosphere between 20 and 1000°C. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009 [source]


Theoretical studies on the electronic and optical properties of two new alternating fluorene/carbazole copolymers

JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 10 2005
Li Yang
Abstract Poly(fluorene)-type materials are widely used in polymer-based emitting devices. During operation there appears, however, an additional emission peak at around 2.3 eV, leading to both a color instability and reduced efficiency. The incorporation of the carbazole units has been proven to efficiently suppress the keto defect emission. In this contribution, we apply quantum-chemical techniques to investigate two series of alternating fluorene/carbazole oligomers and copolymers poly[2,7-(N-(2-methyl)-carbazole)- co - alt -2,7-m(9,9-dimethylfluorene)], namely, PFmCz (m = 1,2) and gain a detailed understanding of the influence of carbazole units on the electronic and optical properties of fluorene derivatives. The electronic properties of the neutral molecules, HOMO-LUMO gaps (,H-L), in addition to the positive and negative ions, are studied using B3LYP functional. The lowest excitation energies (Egs) and the maximal absorption wavelength ,abs of PFmCz (m = 1,2) are studied, employing the time-dependent density functional theory (TD-DFT). The properties of the two copolymers, such as ,H-L, Eg, IPs, and EAs were obtained by extrapolating those of the oligomers to the inverse chain length equal to zero (1/n = 0). The outcomes showed that the carbazole unit is a good electron-donating moiety for electronic materials, and the incorporation of carbazole into the polyfluorene (PF) backbone resulted in a broadened energy gap and a blue shift of both the absorption and photoluminescence emission peaks. Most importantly, the HOMO energies of PF1Cz and PF2Cz are both a higher average (0.4 eV) than polyfluorene (PF), which directly results in the decreasing of IPs of about 0.2 eV more than PF, indicating that the carbazole units have significantly improved the hole injection properties of the copolymers. In addition, the energy gap tends to broaden and the absorption and emission peaks are gradually blue-shifted to shorter wavelengths with an increase in the carbazole content in the copolymers. This is due to the interruption of the longer conjugation length of the backbone in the (F1Cz)n series. © 2005 Wiley Periodicals, Inc. J Comput Chem 26: 969,979, 2005 [source]


Synthesis and properties of conjugated polymers containing 3,9- and 2,9-linked carbazole units in the main chain

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 14 2009
Kosaku Tamura
Abstract Novel conjugated polymers containing 3,9- or 2,9-linked carbazole units in the main chain were synthesized by the polycondensation of ethynyl- and iodo-substituted 9-arylenecarbazolylene monomers, and their optical and electrical properties were studied. Polymers with weight-average molecular weights of 3400,12,000 were obtained in 76,99% yields by the Sonogashira coupling polycondensation in piperidine or tetrahydrofuran (THF)/piperidine at 30 °C for 48 h. All the 3,9-linked polymers absorbed light around 300 nm. The para -phenylene-linked polymer also absorbed light around 350 nm, while meta -phenylene-linked one did not. The 3,9-linked polymers absorbed light at a wavelength longer than the 2,9-linked one. The polymers emitted blue fluorescence with high quantum yields (0.21,0.78) upon excitation at the absorption maxima. The polymers were oxidized around 0.6 V, and reduced around 0.5 V. Poly(1) showed the dark conductivity of 3.7 × 10,11 S/cm (103 V/cm). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3506,3517, 2009 [source]