Capita Growth Rate (capita + growth_rate)

Distribution by Scientific Domains


Selected Abstracts


Effects of nitrogen deposition on the interaction between an aphid and its host plant

ECOLOGICAL ENTOMOLOGY, Issue 1 2008
CARALYN B. ZEHNDER
Abstract 1.,Anthropogenic increases in nitrogen deposition are impacting terrestrial ecosystems worldwide. While some of the direct ecosystem-level effects of nitrogen deposition are understood, the effects of nitrogen deposition on plant,insect interactions and on herbivore population dynamics have received less attention. 2.,Nitrogen deposition will potentially influence both plant resource availability and herbivore population growth. If increases in herbivore population growth outstrip increases in resource availability, then increases in the strength of density dependence expressed within the herbivore population would be predicted. Alternatively, if plant resources respond more vigorously to nitrogen deposition than do herbivore populations, a decline in the strength of density dependence would be expected. No change in the strength of density dependence acting upon the herbivore population would suggest equivalent responses by herbivores and plants. 3.,A density manipulation experiment was performed to examine the effect of nitrogen deposition on the interaction between a host plant, Asclepias tuberosa, and its herbivore, Aphis nerii. Aphid maximum per capita growth rate (Rmax), carrying capacity (K), and the strength of density dependence were measured under three nitrogen deposition treatments. The effect of nitrogen deposition on the relationship among these three measures of insect population dynamics was explored. 4.,Simulated nitrogen deposition increased aphid per capita population growth, plant foliar nitrogen concentrations, and plant biomass. Nitrogen deposition caused Rmax and K to increase proportionally, leading to no overall change in the strength of density dependence. In this system, potential changes in the negative feedback processes operating on herbivore populations following nitrogen deposition appear to be buffered by concomitant changes in resource availability. [source]


Rapid evolution and the convergence of ecological and evolutionary time

ECOLOGY LETTERS, Issue 10 2005
Nelson G. Hairston Jr
Abstract Recent studies have documented rates of evolution of ecologically important phenotypes sufficiently fast that they have the potential to impact the outcome of ecological interactions while they are underway. Observations of this type go against accepted wisdom that ecological and evolutionary dynamics occur at very different time scales. While some authors have evaluated the rapidity of a measured evolutionary rate by comparing it to the overall distribution of measured evolutionary rates, we believe that ecologists are mainly interested in rapid evolution because of its potential to impinge on ecological processes. We therefore propose that rapid evolution be defined as a genetic change occurring rapidly enough to have a measurable impact on simultaneous ecological change. Using this definition we propose a framework for decomposing rates of ecological change into components driven by simultaneous evolutionary change and by change in a non-evolutionary factor (e.g. density dependent population dynamics, abiotic environmental change). Evolution is judged to be rapid in this ecological context if its contribution to ecological change is large relative to the contribution of other factors. We provide a worked example of this approach based on a theoretical predator,prey interaction [Abrams, P. & Matsuda, H. (1997). Evolution, 51, 1740], and find that in this system the impact of prey evolution on predator per capita growth rate is 63% that of internal ecological dynamics. We then propose analytical methods for measuring these contributions in field situations, and apply them to two long-term data sets for which suitable ecological and evolutionary data exist. For both data sets relatively high rates of evolutionary change have been found when measured as character change in standard deviations per generation (haldanes). For Darwin's finches evolving in response to fluctuating rainfall [Grant, P.R. & Grant, B.R. (2002). Science, 296, 707], we estimate that evolutionary change has been more rapid than ecological change by a factor of 2.2. For a population of freshwater copepods whose life history evolves in response to fluctuating fish predation [Hairston, N.G. Jr & Dillon, T.A. (1990). Evolution, 44, 1796], we find that evolutionary change has been about one quarter the rate of ecological change , less than in the finch example, but nevertheless substantial. These analyses support the view that in order to understand temporal dynamics in ecological processes it is critical to consider the extent to which the attributes of the system under investigation are simultaneously changing as a result of rapid evolution. [source]


Do Crises Induce Reform?

ECONOMICS & POLITICS, Issue 2 2001
Simple Empirical Tests of Conventional Wisdom
We find evidence for the crisis-induces-reform hypothesis at extreme values of the inflation rate and the black market premium. Episodes of extremely high inflation or black market premiums are followed by periods of better performance than episodes of moderately high inflation or black market premiums. We fail to find similar evidence of the crisis hypothesis when crisis is measured as a high current account deficit, a high budget deficit, or a negative per capita growth rate. The pattern of foreign aid disbursements may help explain the results. Foreign aid is reduced at extreme values of inflation or the black market premium, while it is actually increased for more extreme values of the current account deficit and the budget deficit. [source]


ALLEE EFFECT AND SELF-FERTILIZATION IN HERMAPHRODITES: REPRODUCTIVE ASSURANCE IN DEMOGRAPHICALLY STABLE POPULATIONS

EVOLUTION, Issue 12 2004
Pierre-Olivier Cheptou
Abstract The fact that selfing increases seed set (reproductive assurance) has often been put forward as an important selective force for the evolution of selfing. However, the role of reproductive assurance in hermaphroditic populations is far from being clear because of a lack of theoretical work. Here, I propose a theoretical model that analyzes selffertilization in the presence of reproductive assurance. Because reproductive assurance directly influences the per capita growth rate, I developed an explicit demographic model for partial selfers in the presence of reproductive assurance, specifically when outcrossing is limited by the possibility of pollen transfer (Allee effect). Mating system parameters are derived as a function of the underlying demographical parameters. The functional link between population demography and mating system parameters (reproductive assurance, selfing rate) can be characterized. The demographic model permits the analysis of the evolution of self-fertilization in stable populations when reproductive assurance occurs. The model reveals some counterintuitive results such as the fact that increasing the fraction of selfed ovules can, in certain circumstances, increase the fraction of outcrossed ovules. Moreover, I demonstrate that reproductive assurance per se cannot account for the evolution of stable mixed selfing rates. Also, the model reveals that the extinction of outcrossing populations depends on small changes in population density (ecological perturbations), while the transition from outcrossing to selfing can, in certain cases, lead the population to extinction (evolutionary suicide). More generally, this paper highlights the fact that self-fertilization affects both the dynamics of individuals and the dynamics of selfing genes in hermaphroditic populations. [source]


Experimental demonstration of population extinction due to a predator-driven Allee effect

JOURNAL OF ANIMAL ECOLOGY, Issue 3 2010
Andrew M. Kramer
Summary 1. Allee effects may result in negative growth rates at low population density, with important implications for conservation and management of exploited populations. Theory predicts prey populations will exhibit Allee effects when their predator exhibits a Type II functional response, but empirical evidence linking this positively density-dependent variation in predator-induced individual mortality to population growth rate and probability of extinction is lacking. 2. Here, we report a demonstration of extinction due to predator-driven Allee effects in an experimental Daphnia-Chaoborus system. A component Allee effect caused by higher predation rates at low Daphnia density led to positive density dependence in per capita growth rate and accelerated extinction rate at low density. 3. A stochastic model of the process revealed how the critical density below which population growth is negative depends on the mechanistic details of the predator,prey interaction. 4. The ubiquity of predator,prey interactions and saturating functional responses suggests predator-driven Allee effects are potentially important in determining extinction risk of a large number of species. [source]


Habitat heterogeneity affects population growth in goshawk Accipiter gentilis

JOURNAL OF ANIMAL ECOLOGY, Issue 2 2001
Oliver Krüger
Summary 1The concept of site-dependent population regulation combines the ideas of Ideal Free Distribution-type of habitat settlement and density dependence in a vital rate mediated by habitat heterogeneity. The latter is also known as habitat heterogeneity hypothesis. Site-dependent population regulation hypothesis predicts that increasing population density should lead to inhabitation of increasingly poor territories and decreasing per capita population growth rate. An alternative mechanism for population regulation in a territorial breeding system is interference competition. However, this would be expected to cause a more even decrease in individual success with increasing density than site-dependent regulation. 2We tested these ideas using long-term (1975,99) population data from a goshawk Accipiter gentilis population in Eastern Westphalia, Germany. 3Goshawk territory occupancy patterns and reproduction parameters support predictions of site-dependent population regulation: territories that were occupied more often and earlier had a higher mean brood size. Fecundity did not decrease with increasing density in best territories. 4Using time-series modelling, we also showed that the most parsimonious model explaining per capita population growth rate included annual mean habitat quality, weather during the chick rearing and autumn period and density as variables. This model explained 63% of the variation in per capita growth rate. The need for including habitat quality in the time-series model provides further support for the idea of site-dependent population regulation in goshawk. [source]


Foreign aid and long-run economic growth: empirical evidence for a panel of developing countries

JOURNAL OF INTERNATIONAL DEVELOPMENT, Issue 1 2006
Georgios Karras
Abstract This paper investigates the relationship between foreign aid and growth in per capita GDP using annual data from the 1960 to 1997 period for a sample of 71 aid-receiving developing economies. The results show that the effect of foreign aid on economic growth is positive, permanent, statistically significant, and sizable: raising foreign aid by $20 per person of the receiving country results in a permanent increase in the growth rate of real GDP per capita by approximately 0.16,per,cent. Using an alternative foreign-aid measure, a permanent increase in aid by 1,per,cent of the receiving economy's GDP permanently raises the per capita growth rate by 0.14 to 0.26,per,cent. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Occasional intraguild predation structuring small mammal assemblages: the marsupial Didelphis aurita in the Atlantic Forest of Brazil

AUSTRAL ECOLOGY, Issue 5 2009
MAÍRA C. MOURA
Abstract The didelphid marsupial, Didelphis aurita, is suggested as an intraguild predator and as key-species in small mammal assemblages of the Atlantic Forest of Brazil. The field experiments required to test this hypothesis are complex to implement, but the recent revival of regression methods offers a viable alternative. Here we use the dynamic and static regression methods to determine the importance of D. aurita as a competitor and intraguild predator. Capture,recapture data from two localities in the Rio de Janeiro State were used, Garrafão (municipality of Guapimirim), a coastal forest of the Serra do Mar, and Barra de Maricá, a costal sand dune vegetation. Population and microhabitat variables were monitored from April 1997 to April 2003 in Garrafão, and from January 1986 to July 1990 in Barra de Maricá. Microhabitat variables were related to Canopy, Plant, Litter and Rock covers, Obstruction from 0 to 1.5 m, and Number of logs. Exploitation competition was tested by the dynamic method, which models the effects of D. aurita on the per capita growth rate of a species. Interference by predation or competition was tested by the static method, where the abundance of D. aurita at trap stations was regressed against the abundance of other small mammals, after removal of any variation associated with microhabitat factors. Exploitation competition was not detected, but the interference of D. aurita was pervasive, affecting all small mammals studied in the two localities. The clear avoidance of D. aurita by all small mammals tested in two localities of different physiognomies indicates that it functions as an intraguild predator, even if actual predation by D. aurita is an occasional event. [source]


A niche for neutrality

ECOLOGY LETTERS, Issue 2 2007
Peter B. Adler
Abstract Ecologists now recognize that controversy over the relative importance of niches and neutrality cannot be resolved by analyzing species abundance patterns. Here, we use classical coexistence theory to reframe the debate in terms of stabilizing mechanisms (niches) and fitness equivalence (neutrality). The neutral model is a special case where stabilizing mechanisms are absent and species have equivalent fitness. Instead of asking whether niches or neutral processes structure communities, we advocate determining the degree to which observed diversity reflects strong stabilizing mechanisms overcoming large fitness differences or weak stabilization operating on species of similar fitness. To answer this question, we propose combining data on per capita growth rates with models to: (i) quantify the strength of stabilizing processes; (ii) quantify fitness inequality and compare it with stabilization; and (iii) manipulate frequency dependence in growth to test the consequences of stabilization and fitness equivalence for coexistence. [source]


Northern Atlantic Oscillation effects on the temporal and spatial dynamics of green spruce aphid populations in the UK

JOURNAL OF ANIMAL ECOLOGY, Issue 4 2007
SILVERIO SALDAÑA
Summary 1The role of climate variability in determining the spatial and temporal patterns of numerical fluctuations is a central problem in ecology. The influence of the North Atlantic Oscillation (NAO) index on the population dynamics and spatial synchrony of the green spruce aphid Elatobium abietinum across the UK was shown. 2Fifteen overlapping time series within the UK were analysed; we used nonparametric models for determining the feedback nonlinear structure and the climatic effects. The spatial synchrony of these populations and the relationship between synchrony and NAO was estimated. 3From the 15 time series across the UK, 11 showed positive and significant NAO effects. In most of the cases the NAO effects were nonlinear showing strong negative effects of low values. The NAO variation improve the explained variance of the first-order feedback models in 14·5%; ranging from 0% to 48%. All data showed strong-nonlinear (concave) feedback structure. In most of the localities the explained variance by the first-order feedback was about 50,60%. 4The spatial synchrony of the per capita growth rates and residuals is high across long distances for those populations affected by NAO. The correlation function predicts a spatial scale of synchrony of about 350,400 km for NAO influenced populations. 5We think that simple population theoretical models describing the link between NAO fluctuations and green spruce aphid dynamics may be fundamental for predicting and simulating the consequences of different climatic scenarios of the future. [source]


Rainfall effects on rare annual plants

JOURNAL OF ECOLOGY, Issue 4 2008
Jonathan M. Levine
Summary 1Variation in climate is predicted to increase over much of the planet this century. Forecasting species persistence with climate change thus requires understanding of how populations respond to climate variability, and the mechanisms underlying this response. Variable rainfall is well known to drive fluctuations in annual plant populations, yet the degree to which population response is driven by between-year variation in germination cueing, water limitation or competitive suppression is poorly understood. 2We used demographic monitoring and population models to examine how three seed banking, rare annual plants of the California Channel Islands respond to natural variation in precipitation and their competitive environments. Island plants are particularly threatened by climate change because their current ranges are unlikely to overlap regions that are climatically favourable in the future. 3Species showed 9 to 100-fold between-year variation in plant density over the 5,12 years of censusing, including a severe drought and a wet El Niño year. During the drought, population sizes were low for all species. However, even in non-drought years, population sizes and per capita growth rates showed considerable temporal variation, variation that was uncorrelated with total rainfall. These population fluctuations were instead correlated with the temperature after the first major storm event of the season, a germination cue for annual plants. 4Temporal variation in the density of the focal species was uncorrelated with the total vegetative cover in the surrounding community, suggesting that variation in competitive environments does not strongly determine population fluctuations. At the same time, the uncorrelated responses of the focal species and their competitors to environmental variation may favour persistence via the storage effect. 5Population growth rate analyses suggested differential endangerment of the focal annuals. Elasticity analyses and life table response experiments indicated that variation in germination has the same potential as the seeds produced per germinant to drive variation in population growth rates, but only the former was clearly related to rainfall. 6Synthesis. Our work suggests that future changes in the timing and temperatures associated with the first major rains, acting through germination, may more strongly affect population persistence than changes in season-long rainfall. [source]