| |||
Capillary Rise (capillary + rise)
Selected AbstractsEricaceous shrubs on abandoned block-cut peatlands: implications for soil water availability and Sphagnum restorationECOHYDROLOGY, Issue 4 2009Kegan K Farrick Abstract Following harvesting by manual block-cut methods and subsequent abandonment, Cacouna bog has undergone a natural vegetation succession, with ericaceous shrubs covering more than 90% of the surface. The abundance of shrubs plays a major role in the soil water flux and availability at the site, impacting Sphagnum regeneration. From June 1 to August 22, 2007, field measurements indicate that transpiration represented the largest water loss from the shrubs at 1·7 mm day,1, comprising 142 mm (42%) of rainfall, compared to 93 mm of evaporation (28%) from bare soil. The rainfall interception from the canopy (62 mm) and litter (15 mm) accounted for 23% of seasonal rainfall. Thus after transpiration and interception losses are accounted for, only 115 mm of the 334 mm of rain (34%) remained available for other processes (recharge/soil evaporation). In the field, the litter layer prevented 17 mm from being lost over the summer as it reduced evaporation by 18%. Laboratory experiments using intact soil monoliths with and without shrubs and litter indicate that at depths below 10 cm the water content from the shrub monoliths decreased 27% versus 20% in the bare peat monoliths because of root water uptake. As a management prescription, raising the water table within 20 cm of the surface would provide water to the most active root uptake zones, reducing the need for extraction from the upper 10 cm of the peat. At this level sufficient water can be supplied to the surface through capillary rise, providing adequate water for the reestablishment/survival of Sphagnum. Copyright © 2009 John Wiley & Sons, Ltd. [source] Shrinkage of initially very wet soil blocks, cores and clods from a range of European Andosol horizonsEUROPEAN JOURNAL OF SOIL SCIENCE, Issue 2 2007F. Bartoli Summary In advanced stages of volcanic ash soil formation, when more clay is formed, soil porosity values and soil water retention capacities are large and the soils show pronounced shrinkage on drying. Soil shrinkage is a key issue in volcanic soil environments because it often occurs irreversibly when topsoils dry out after changes from permanent grassland or forest to agriculture. European Andosols have developed in a wide range of climatic conditions, leading to a wide range in intensity of both weathering and organo-mineral interactions. The question arises as to whether these differences affect their shrinkage properties. We aimed to identify common physically based shrinkage laws which could be derived from soil structure, the analysis of soil constituents, the selected sampling size and the drying procedure. We found that the final volumetric shrinkage of the initially field-wet (56,86% of total porosity) or capillary-wet (87,100% of total porosity) undisturbed soil samples was negatively related to initial bulk density and positively related to initial capillary porosity (volumetric soil water content of soil cores after capillary rise). These relationships were linear for the soil clods of 3,8 cm3, with final shrinkage ranging from 21.2 to 52.2%. For soil blocks of 240 cm3 and soil cores of 28.6 cm3 we found polynomial and exponential relationships, respectively, with thresholds separating shrinkage and nearly non-shrinkage domains, and larger shrinkage values for the soil cores than for the soil blocks. For a given sample size, shrinkage was more pronounced in the most weathered and most porous Andosol horizons, rich in Al-humus, than in the less weathered and less porous Andosol horizons, poor in Al-humus. The Bw horizons, being more weathered and more porous, shrank more than the Ah horizons. We showed that the structural approach combining drying kinetics under vacuum, soil water analysis and mercury porosimetry is useful for relating water loss and shrinkage to soil structure and its dynamics. We also found that the more shrinkage that occurred in the Andosol horizon, the more pronounced was its irreversible mechanical change. [source] Applicability of the Washburn theory for determining the wetting angle of soilsHYDROLOGICAL PROCESSES, Issue 17 2007Henryk Czachor Abstract The Washburn theory is frequently applied to determine the wetting angle of soils. It is based on the porous medium being characterized as a set of cylindrical, straight capillaries. It is clear that this is an oversimplification as real soil pores vary at least as regards two important features: cross-section and tortuosity. In this study, a mathematical model of meniscus movement in a tortuous, sinusoidal shaped capillary was developed and the obtained analytical expressions for the wetting angle and for the pore radius were compared with the appropriate formula concerning the Washburn theory. The results demonstrate that the wetting angle of water in soil determined on the basis of the measured wetting front kinetics and of Washburn equations is likely to have an overestimated value due to the wavy, tortuous nature of inter-soil grain pores. The above conclusion was confirmed by capillary rise experiments. Wetting angles of methyl alcohol and of water measured on flat glass were 0 and 27·4° , respectively. Apparent wetting angles calculated from capillary rise in powdered glass kinetics and Washburn equation were 70 and 83° respectively. If the pore structure characteristics of porous media are not taken into account the applicability of the Washburn theory for soil wettability estimation seems to be very limited. Copyright © 2007 John Wiley & Sons, Ltd. [source] Hydrology and nitrogen balance of a seasonally inundated Danish floodplain wetlandHYDROLOGICAL PROCESSES, Issue 3 2004Hans Estrup Andersen Abstract This paper characterizes a seasonally inundated Danish floodplain wetland in a state close to naturalness and includes an analysis of the major controls on the wetland water and nitrogen balances. The main inputs of water are precipitation and percolation during ponding and unsaturated conditions. Lateral saturated subsurface flow is low. The studied floodplain owes its wetland status to the hydraulic properties of its sediments: the low hydraulic conductivity of a silt,clay deposit on top of the floodplain maintains ponded water during winter, and parts of autumn and spring. A capillary fringe extends to the soil surface, and capillary rise from groundwater during summer maintains near-saturated conditions in the root zone, and allows a permanently very high evapotranspiration rate. The average for the growing season of 1999 is 3·6 mm day,1 and peak rate is 5·6 mm day,1. In summer, the evapotranspiration is to a large degree supplied by subsurface storage in a confined peat layer underlying the silt,clay. The floodplain sediments are in a very reduced state as indicated by low sulphate concentrations. All nitrate transported into the wetland is thus denitrified. However, owing to modest water exchange with surrounding groundwater and surface water, denitrification is low; 71 kg NO3,N ha,1 during the study period of 1999. Reduction of nitrate diffusing into the sediments during water ponding accounts for 75% of nitrate removal. Biomass production and nitrogen uptake in above-ground vegetation is high,8·56 t dry matter ha,1 year,1 and 103 kg N ha,1 year,1. Subsurface ammonium concentrations are high, and convective upward transport into the root zone driven by evapotranspiration amounted to 12·8 kg N ha,1year,1. The floodplain wetland sediments have a high nitrogen content, and conditions are very favourable for mineralization. Mineralization thus constitutes 72% of above-ground plant uptake. The study demonstrates the necessity of identifying controlling factors, and to combine surface flow with vadose and groundwater flow processes in order to fully comprehend the flow and nitrogen dynamics of this type of wetland. Copyright © 2004 John Wiley & Sons, Ltd. [source] Sustainable use of groundwater for irrigation: a numerical analysis of the subsoil water fluxes,IRRIGATION AND DRAINAGE, Issue 3 2002Mobin-ud-Din Ahmad irrigation; eaux souterraines; surexploitation de l'aquifère; recharge des eaux souterraines; utilisation nette de l'eau souterraine; modélisation au niveau de la parcelle cultivée; le Pakistan Abstract The food-producing regions of the world increasingly rely on irrigation from groundwater resources. Further increases of groundwater use can adversely affect the sustainability of irrigated agriculture and put food security at risk. Sustainability of irrigation at field scale with groundwater is obtained if groundwater recharge is in equilibrium with tubewell extractions and capillary rise. Traditional information on phreatic surface behaviour does not explain the processes causing a phreatic surface to decline or incline. In this study, the physically based numerical model Soil,Water,Atmosphere,Plant (SWAP) was applied to compute soil moisture content and vertical soil water fluxes in the unsaturated zone for the cotton,wheat and rice,wheat cropping system of Punjab, Pakistan. SWAP has been calibrated and verified with in situ measurements of soil moisture content and evapotranspiration fluxes measured by means of the Bowen ratio surface energy balance technique. Accurate data of the soil hydraulic properties are critical for the calibration of the soil moisture distribution. With knowledge of the van Genuchten,Mualem parameters available, SWAP could be applied to assess recharge and capillary rise for most field conditions, including basin irrigation. The results under Pakistani conditions show that deep percolation cannot always be estimated from root zone water balances. An annual recharge of 23.3 cm was computed for the cotton,wheat area. Sustainability of irrigation with groundwater is obtained if a reduction in irrigation with groundwater by 36% is obtained. An annual recharge of 38.9 cm is estimated in rice,wheat systems, and a reduction of 62% in groundwater extraction is required to reach sustainability of groundwater use at field scale. Such information cannot be obtained from classical phreatic surface fluctuation data, and unsaturated zone modelling therefore provides additional insights for groundwater policy making. Copyright © 2002 John Wiley & Sons, Ltd. RÉSUMÉ Les régions de production alimentaire de la planète se servent de plus en plus de l'eau souterraine pour l'irrigation. Ultérieurs accroissements de l'utilisation des eaux souterraines peuvent avoir des répercussions négatives sur l'irrigation agricole soutenable et sur la sécurité alimentaire. Une irrigation soutenable au niveau de la parcelle cultivée en utilisant l'eau souterraine est obtenue si le taux de recharge de cette dernière est en équilibre avec le taux d'extraction des puits et la remontée capillaire. L'information traditionellement disponible concernant l'évolution du niveau phréatique ne permet pas d'expliquer les procès qui causeraient son abaissement ou son accroissement. Cette étude présente les resultats obtenus grâce à l'utilisation d'un modèle numérique appelé Soil,Water,Atmosphere,Plant (SWAP), qui se base sur des principes physiques, avec lequel ont été calculés les taux d'humidité du sol et les flux verticaux d'humidité dans la zone non-saturée du sol pour ce qui concèrne le système de cultivation coton,blé et riz,blé du Pounjab, au Pakistan. SWAP a été calibré et verifié grâce à des mesures in situ du taux d'humidité du sol et des flux d'évapotranspiration quantifiés en appliquant le rapport de Bowen, basé sur le concept du bilan énergétique au niveau du sol. Disposer de données prises concernant les propriétés hydrauliques du sol est essentiel pour calibrer la distribution de l'humidité du sol. Grâce à la connaissance des paramètres de van Genuchten,Mualem disponibles, SWAP a pu être utilisé pour évaluer le taux de recharge et la remontée capillaire en fonction de différentes conditions du terrain, irrigation de bassin incluse. Les résultats sous les conditions Pakistanes montrent que la percolation profonde ne peut pas toujours être estimée par les équilibres hydrologiques de la zone radicale. Une recharge annuelle de 23,3 cm a été estimée pour la zone coton,blé. L'utilisation soutenable de l'eau souterraine pour l'irrigation serait obtenue si on en réduisait l'extraction de 36%. Pour ce qui concerne la zone riz,blé, une recharge annuelle de 38,9 cm a été estimée, et une réduction de 62% de l'extraction de l'eau souterraine serait nécessaire pour une utilisation soutenable de l'eau souterraine à l'échelle de la parcelle cultivée. Ces informations ne peuvent pas être obtenues sur la base des données ordinaires concernant les fluctuations du niveau phréatique; la modélisation représente donc un appui essentiel en matière de prise de décision concernant la gestion de l'eau souterraine. Copyright © 2002 John Wiley & Sons, Ltd. [source] Fat Migration in Chocolate: Diffusion or Capillary Flow in a Particulate Solid?,A Hypothesis PaperJOURNAL OF FOOD SCIENCE, Issue 7 2004J. M. Aguilera ABSTRACT: The exact mechanism of fat and oil migration in chocolate and chocolate coatings is still unknown. Nevertheless, the so-called "diffusion equation" derived from Fick's 2nd law has been extensively used to model the phenomenon, giving the impression that molecular diffusion is the single transport mechanism. We propose that chocolate may be microstructurally regarded as a particulate medium formed by an assembly of fat-coated particles (for example, cocoa solids, sugars crystals, and milk powder). Within this matrix the liquid fraction of cocoa fat (which increases with temperature) is likely to move under capillary forces through interparticle passages and connected pores. Based on available evidence (microstructure, kinetic data, temperature dependence of liquid fat fraction, and so on) we demonstrate that capillary forces may have an important role to play in bulk flow of liquid fat and oils. The Lucas-Washburn equation for capillary rise fits available data under most reported experimental conditions. Detailed microstructural analysis in actual products as well as data on key parameters (surface tension, contact angle, viscosity) is necessary to confirm this hypothesis. Bulk flow due to capillary effects, highly disregarded in structured foods, should be considered as a mass transfer mechanism in liquid-filled porous or particulate foods. [source] |