Capillary Liquid Chromatography (capillary + liquid_chromatography)

Distribution by Scientific Domains


Selected Abstracts


An integrated serum proteomic approach capable of monitoring the low molecular weight proteome with sequencing of intermediate to large peptides

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 17 2009
Karen Merrell
The low-abundance, low molecular weight serum proteome has high potential for the discovery of new biomarkers using mass spectrometry (MS). Because the serum proteome is large and complex, defining relative quantitative differences for a molecular species between comparison groups requires an approach with robust separation capability, high sensitivity, as well as high mass resolution. Capillary liquid chromatography (cLC)/MS provides both the necessary separation technique and the sensitivity to observe many low-abundance peptides. Subsequent identification of potential serum peptide biomarkers observed in the cLC/MS step can in principle be accomplished by in series cLC/MS/MS without further sample preparation or additional instrumentation. In this report a novel cLC/MS/MS method for peptide sequencing is described that surpasses previously reported size limits for amino acid sequencing accomplished by collisional fragmentation using a tandem time-of-flight MS instrument. As a demonstration of the approach, two low-abundance peptides with masses of ,4000,5000,Da were selected for MS/MS sequencing. The multi-channel analyzer (MCA) was used in a novel way that allowed for summation of 120 fragmentation spectra for each of several customized collision energies, providing more thorough fragmentation coverage of each peptide with improved signal to noise. The peak list from this composite analysis was submitted to Mascot for identification. The two index peptides, 4279,Da and 5061,Da, were successfully identified. The peptides were a 39 amino acid immunoglobulin G heavy chain variable region fragment and a 47 amino acid fibrin alpha isoform C-terminal fragment. The method described here provides the ability both to survey thousands of serum molecules and to couple that with markedly enhanced cLC/MS/MS peptide sequencing capabilities, providing a promising technique for serum biomarker discovery. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Capillary liquid chromatography/atmospheric-pressure matrix-assisted laser desorption/ionisation ion trap mass spectrometry: a comparison with liquid chromatography/matrix-assisted laser desorption/ionisation time-of-flight and liquid chromatography/electrospray ionisation quadrupole time-of-flight for the identification of tryptic peptides

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 5 2006
Colin S. Creaser
The atmospheric-pressure matrix-assisted laser desorption/ionisation quadrupole ion trap (AP-MALDI-QIT) analysis of tryptic peptides is reported following capillary liquid chromatographic (LC) separation and direct analysis of a protein digest. Peptide fragments were identified by peptide mass fingerprinting from mass spectrometric data and sequence analysis obtained by tandem mass spectrometry of the principal mass spectral peaks using a data-dependent scanning protocol. These data were compared with those from mass spectrometric analysis using capillary LC/MALDI-time-of-flight (TOF) and capillary LC/electrospray ionisation (ESI)-quadrupole TOF. For all three configurations the resulting data were searched against the MSDB database, using MASCOT and the sequence coverage compared for each technique. Complementary data were obtained using the three techniques. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Analysis of integral membrane proteins by heat gel-embedment combined with improved in-gel digestions

ELECTROPHORESIS, Issue 23 2009
Jian Zhou
Abstract Analysis of integral membrane proteins (IMPs) presents a special challenge because of their hydrophobic nature and low abundance. Here, a new method was developed, which involved heat gel-embedment and improved in-gel digestion of the proteins. Membrane protein lysate containing detergents was mixed with acrylamide solution and the proteins were embedded when the gel polymerized. For comparison, the protein embedment was made at different temperatures (25, 35 or 45°C), and the in-gel digestions were performed in the presence of 0.1% RapiGest reagent (ALS), 0.1% sodium deoxycholate and 10% ACN, respectively. The resultant peptides were extracted and analyzed by capillary liquid chromatography coupled with tandem mass spectrometry. Compared with that at 25°C, gel-embedment at 45°C improved the protein embedment and thus protein identification, with the identified IMPs increased by 27%. 0.1% sodium deoxycholate was more efficient than 0.1% ALS and 10% ACN in terms of improving the digestion and tryptic digest recovery of the gel-embedded proteins particularly the hydrophobic IMPs. Out of the 326 IMPs identified by heat gel-embedment combined with improved in-gel digestion strategies, 149 (46%) proteins had at least two mapped transmembrane domains. These results indicate that our newly developed protocol could facilitate the high throughput analysis of integral membrane proteome. [source]


Chromatographic evaluation and comparison of three ,-cyclodextrin-based stationary phases by capillary liquid chromatography and pressure-assisted capillary electrochromatography

ELECTROPHORESIS, Issue 19 2008
Bo Lin
Abstract Enantiomer separations were performed on three ,-cyclodextrin-based chiral stationary phases (CSP) containing the pernaphthylcarbamoylated ,-cyclodextrin (CSP 1), peracetylated ,-cyclodextrin (CSP 2) and permethylated ,-cyclodextrin (CSP 3) as chiral selectors by capillary liquid chromatography and pressure-assisted capillary electrochromatography in this study. Triethylammonium acetate/MeOH or phosphate buffer/MeOH was used as the mobile phase. The experimental factors affecting chiral separations have been examined for each CSP, including pH of the buffers, methanol content and applied voltage. Under optimal separation conditions, a number of racemic compounds were resolved into their enantiomers on three cyclodextrin-based CSP. A comparative study on the performance of three CSP revealed the presence of carbonyl functional groups as well as aromatic rings in the cyclodextrin derivatives, enhanced the interaction between the analytes and CSP, and thus improved enantioselectivity of the CSP. [source]


Methacrylate-based monolithic column with mixed-mode hydrophilic interaction/strong cation-exchange stationary phase for capillary liquid chromatography and pressure-assisted CEC

ELECTROPHORESIS, Issue 19 2008
Jian Lin
Abstract A novel porous polymethacrylate-based monolithic column by in situ copolymerization of 3-sulfopropyl methacrylate (SPMA) and pentaerythritol triacrylate in a binary porogenic solvent consisting of cyclohexanol/ethylene glycol was prepared. The monolith possessed in their structures bonded sulfonate groups and hydroxyl groups and was evaluated as a hydrophilic interaction and strong cation-exchange stationary phases in capillary liquid chromatography (cLC) and pressure-assisted CEC using small polar neutral and charged solutes. While the SPMA was introduced as multifunctional monomer, the pentaerythritol triacrylate was used to replace ethylene glycol dimethacrylate as cross-linker with much more hydrophilicity due to a hydroxyl sub-layer. The different characterization of monolithic stationary phases were specially designed and easily prepared by altering the amount of SPMA in the polymerization solution as well as the composition of the porogenic solvent for cLC and pressure-assisted CEC. The resulting monolith showed the different trends about the effect of the permeabilities on efficiency in the pressure-assisted CEC and cLC modes. A typical hydrophilic interaction chromatography mechanism was observed at higher organic solvent content (ACN%>70%) for polar neutral analytes. For polar charged analytes, both hydrophilic interaction and electrostatic interaction contributed to their retention. Therefore, for charged analytes, selectivity can be readily manipulated by changing the composition of the mobile phase (e.g., pH, ionic strength and organic modifier). With the optimized monolithic column, high plate counts reaching greater than 170,000,plates/m for pressure-assisted CEC and 105,000 plates/m for cLC were easily obtained, respectively. [source]


Analysis of the sinusitis nasal lavage fluid proteome using capillary liquid chromatography interfaced to electrospray ionization-quadrupole time of flight- tandem mass spectrometry

ELECTROPHORESIS, Issue 9 2004
Begona Casado
Abstract The nasal lavage fluids (NLFs) from four subjects with acute sinusitis were analyzed to investigate the amount of proteins expressed in this pathology at the beginning of the event (day 1) and after 6 days of treatment with antibiotics and a nasal steroid spray. The protein identification was performed with capillary liquid chromatography-electrospray-quadrupole time of flight-(LC-ESI-Q-TOF)-mass spectrometry. The samples collected on the first day contained high-abundant plasma proteins, such as albumin and immunoglobulins, glandular serous cell proteins (lysozyme, lactoferrin, and polymeric immunoglobulin receptor), epithelial keratins, and inflammatory cell proteins (myeloperoxidase, IL-16, and IL-17E). After six days of therapy, the complexity of the proteome was reduced to plasma proteins and lysozyme with no inflammatory markers. The presence of hemoglobin, however, suggested that significant squamous metaplasia with breaches in the epithelial barrier, or nasal steroid-related bleeding, had occurred. The proteomic approach presented here allowed us to identify, in the high complexity of acute sinusitis nasal secretions, the proteins that respond to a pharmacological treatment and that could be suitable as markers of this pathology. [source]


Site-specific detection of S -nitrosylated PKB ,/Akt1 from rat soleus muscle using CapLC-Q-TOFmicro mass spectrometry

JOURNAL OF MASS SPECTROMETRY (INCORP BIOLOGICAL MASS SPECTROMETRY), Issue 9 2005
Xiao-Ming Lu
Abstract Protein Kinase B,(PKB,, or Akt1) is believed to play a crucial role in programmed cell death, cancer progression and the insulin-signaling cascade. The protein is activated by phosphorylation at multiple sites and subsequently phosphorylates and activates eNOS. Free cysteine residues of the protein may capture reactive, endogenously produced nitric oxide (NO) as S -nitrosothiols. Site-specific detection of S -nitrosylated cysteine residues, usually at low stoichiometry, has been a major challenge in proteomic research largely due to the lack of mass marker for S -nitrosothiols that are very labile under physiologic conditions. In this report we describe a sensitive and specific MS method for detection of S -nitrosothiols in PKB ,/Akt1 in rat soleus muscle. PKB ,/Akt1 was isolated by immunoprecipitation and 2D-gel electrophoresis, subjected to in-gel tryptic digestion, and cysteinyl nitrosothiols were reacted with iodoacetic acids [2-C12/C13 = 50/50] under ascorbate reduction conditions. This resulted in the production of relatively stable carboxymethylcysteine (CMC) immonium ions (m/z 134.019 and m/z 135.019) within a narrow argon collision energy (CE = 30 ± 5 V) in the high MS noise region. In addition, free and disulfide-linked cysteine residues were converted to carboxyamidomethylcysteines (CAM). Tryptic S -nitrosylated parent ion was detected with a mass accuracy of 50 mDa for the two CMC immonium ions at the triggered elution time during capillary liquid chromatography (LC) separation. A peptide containing Cys296 was discriminated from four co-eluting tryptic peptides under lock mass conditions (m/z 785.8426). S -nitrosothiol in the tryptic peptide, ITDFGLBKEGIK (B: CAM, [M + 2H]2+ = 690.86, Found: 690.83), is believed to be present at a very low level, since the threshold for the CMC immonium trigger ions was set at 3 counts/s in the MS survey. The high levels of NO that are produced under stress conditions may result in increased S -nitrosylation of Cys296 which blocks disulfide bond formation between Cys296 and Cys310 and suppresses the biological effects of PKB ,/Akt1. With the procedures developed here, this process can be studied under physiological and pathological conditions. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Separation and quantification of 9-(alkylthio)acridines by capillary micellar electrokinetic chromatography and capillary liquid chromatography

JOURNAL OF SEPARATION SCIENCE, JSS, Issue 13 2007
Jana Nejmanová
Abstract Various thioacridine derivatives are potential chemotherapeutics against various diseases which are intensively synthesized, characterized, and investigated by many research groups. Efficient, fast, and reliable separation and quantification methods for their analysis are still to be developed. MEKC and capillary LC (CLC) were applied for the separation and quantification of five highly hydrophobic, weakly basic, and structurally similar 9-(alkylthio)acridines. Since the common anionic and cationic surfactants failed to separate the strongly hydrophobic thioacridines by MEKC, sodium cholate was used in an alkaline BGE and successfully employed for their fast separation. In CLC, the weakly basic nature of the thioacridines necessitated use of LiChrosorb RP-select B sorbent as the stationary phase, which combined with a very simple mobile phase methanol/water yielded an efficient chromatographic separation system. Both, the MEKC and CLC optimized separation methods were then applied to quantify the thioacridines within a concentration range of 1.0×10,5,1.0×10,3 mol/L and the obtained experimental results were critically compared. In practical terms, the MEKC analytical method can quantify the analytes much faster but with a lower reliability while the CLC method performs slower analysis with a higher repeatability of the experimental results. [source]


Peak shape improvement of basic analytes in capillary liquid chromatography

JOURNAL OF SEPARATION SCIENCE, JSS, Issue 3 2005
Anja Prüß
Abstract The analysis of bases is of special interest in pharmaceutical research because numerous active substances contain basic functional groups. Capillary and conventional size LC separations of drug substances spiked with potential impurities were compared. In the case of the nonpolar drug levonorgestrel equal separation efficiency was readily attained by both techniques. The peaks of basic substances, however, showed extensive tailing when separated by capillary LC. The peak deformation was attributable to interactions of the basic substances with the polar inner surface of the fused silica capillaries employed in capillary LC and does not appear with the steel tubing generally used in conventional size LC. This drawback of capillary LC was overcome by use of deactivated fused silica capillaries for column hardware and transfer lines. [source]


First results of a quantitative study of DNA adducts of melphalan in the rat by isotope dilution mass spectrometry using capillary liquid chromatography coupled to electrospray tandem mass spectrometry

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 14 2005
Bart Van den Driessche
Rats were intravenously injected with a single high dose (10,mg/kg) of the alkylating agent melphalan in order to study DNA-adduct formation. Quantitation of a dGuo-melphalan adduct was done by isotope dilution mass spectrometry using capillary liquid chromatography/mass spectrometry (LC/MS) and [15N5]-labeled dGuo-melphalan as internal standard. DNA-adduct levels were studied in bone marrow, liver and kidney. The instrumental detection limit of the method was determined to be 900,fg (S/N 3, pure standard). These first results clearly show a 10 times higher adduct level in bone marrow compared to kidney and a 6 times higher level compared to liver. More experiments will be necessary to gather more information on the pharmacokinetics of melphalan-DNA adducts under in vivo conditions. Copyright © 2005 John Wiley & Sons, Ltd. [source]


Optimal pressure conditions for unbiased external ion accumulation in a two-dimensional radio-frequency quadrupole for Fourier transform ion cyclotron resonance mass spectrometry

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 21 2001
Mikhail E. Belov
When combined with on-line separations (e.g., capillary liquid chromatography (LC)), Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) provides a powerful tool for biological applications, and particularly proteomic studies. The sensitivity, dynamic range, and duty cycle provided by FTICR-MS have been shown to be increased by ion trapping and accumulation in a two-dimensional (2D) radio-frequency (rf)-only multipole positioned externally to an FTICR cell. However, it is important that ions be detected across the desired m/z range without a significant bias. In this work we found that pressure inside the accumulation rf-quadrupole plays an important role in obtaining ,unbiased' ion accumulation. Pressure optimization was performed in both pulsed and continuous modes. It was found that unbiased accumulation in a 2D rf-only quadrupole could be achieved in the pressure range of 5,×,10,4 to 5,×,10,3 Torr. External ion accumulation performed at the optimal pressure resulted in an increase in both the spectrum acquisition rates and dynamic range. Copyright © 2001 John Wiley & Sons, Ltd. [source]