Capillary Interaction (capillary + interaction)

Distribution by Scientific Domains


Selected Abstracts


Stress Development Due to Capillary Condensation in Powder Compacts: A Two-Dimensional Model Study

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 6 2000
Stefan Lampenscherf
A model experiment is presented to investigate the relationship between the humidity-dependent liquid distribution and the macroscopic stress in a partially wet powder compact. Therefore, films of monosized spherical particles were cast on silicon substrates. Using environmental SEM the geometry of the liquid necks trapped between particles was imaged as a function of relative humidity. Simultaneously the macroscopic stress in the substrate adhered particle film was measured by capacitive deflection measurement. The experimentally found humidity dependence of the liquid neck size and the macroscopic film stress are compared with model predictions. The circle,circle approximation is used to predict the size of the liquid necks between touching particles as a function of the capillary pressure. Using the modified Kelvin relation between capillary pressure and relative humidity, we consider the effect of an additional solute which may be present in the capillary liquid. The results of the stress measurement are compared with the model predictions for a film of touching particles in hexagonal symmetry. The contribution of the capillary interaction to the adhesion force between neighboring particles is calculated using the integrated Laplace equation. The resulting film stress can be approximated relating this capillary force to an effective cross section per particle. The experimentally found humidity dependence of the liquid neck size is in good agreement with the model predictions for finite solute concentration. The film stress corresponds to the model predictions only for large relative humidities and shows an unexpected increase at small values. As is shown with an atomic force microscope, the real structure of the particle,particle contact area changes during the wet/dry cycle. A solution/reprecipitation process causes surface heterogeneities and solid bridging between the particles. It is claimed that the existence of a finite contact zone between the particles gives rise to the unexpected increase of the stress at small relative humidities. [source]


Physicochemical Properties of Functional Surfaces in Pitchers of the Carnivorous Plant Nepenthes alata Blanco (Nepenthaceae)

PLANT BIOLOGY, Issue 6 2006
E. V. Gorb
Abstract: Pitchers of the carnivorous plant Nepenthes alata are highly specialized organs adapted to attract, capture, and digest animals, mostly insects. They consist of several well distinguishable zones, differing in macro-morphology, surface microstructure, and functions. Since physicochemical properties of these surfaces may influence insect adhesion, we measured contact angles of non-polar (diiodomethane) and polar liquids (water and ethylene glycol) and estimated the free surface energy of 1) the lid, 2) the peristome, 3) the waxy surface of the slippery zone, and 4) the glandular surface of the digestive zone in N. alata pitchers. As a control, the external surface of the pitcher, as well as abaxial and adaxial surfaces of the leaf blade, was measured. Both leaf surfaces, both lid surfaces, and the external pitcher surface showed similar contact angles and had rather high values of surface free energy with relatively high dispersion component. These surfaces are considered to support strong adhesion forces based on the capillary interaction, and by this, to promote successful attachment of insects. The waxy surface is almost unwettable, has extremely low surface energy, and therefore, must essentially decrease insect adhesion. Both the peristome and glandular surfaces are wetted readily with both non-polar and polar liquids and have very high surface energy with a predominating polar component. These properties result in the preclusion of insect adhesion due to the hydrophilic lubricating film covering the surfaces. The obtained results support field observations and laboratory experiments of previous authors that demonstrated the possible role of different pitcher surfaces in insect trapping and retention. [source]


Templated Self-Assembly: Formation of Folded Structures by Relaxation of Pre-stressed, Planar Tapes,

ADVANCED MATERIALS, Issue 5 2005
M. Boncheva
A strategy for the formation of three-dimensional (3D) structures based on the spontaneous folding of elastomeric tapes is described. These tapes are fabricated in crimped, quasi-3D forms, and carry metal features supporting liquid solder. Self-assembly based on capillary interactions between drops of liquid solder results in folding of the tapes into structures that have quasi- and true 3D topology (see Figure). [source]


Capillary forces between two solid spheres linked by a concave liquid bridge: Regions of existence and forces mapping

AICHE JOURNAL, Issue 5 2009
David Megias-Alguacil
Abstract This article focuses on the capillary interactions arising when two spherical particles are connected by a concave liquid bridge. This scenario is found in many situations where particles are partially wetted by a liquid, like liquid films stabilized with nanoparticles. We analyze different parameters governing the liquid bridge: interparticle separation, wetting angle and liquid volume. The results are compiled in a liquid volume-wetting angle diagram in which the regions of existence (stability) or inexistence (instability) of the bridge are outlined and the possible maximum and minimal particle distances for which the liquid bridge may be found. Calculations of the capillary forces discriminate those conditions for which such force is repulsive or attractive. The results are plotted in form of maps that allow an easy understanding of the stability of a liquid bridge and the conditions at which it may be produced for the two particle model. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source]