| |||
Capillary Fringe (capillary + fringe)
Selected AbstractsDetection and analysis of LNAPL using the instantaneous amplitude and frequency of ground-penetrating radar dataGEOPHYSICAL PROSPECTING, Issue 1 2002Luciana Orlando This paper reports the results of using the ground-penetrating radar (GPR) method to detect light non-aqueous phase liquids (LNAPL) floating on the water table in an area where the thickness of LNAPL present ranges from a few centimetres to several decimetres. To understand the GPR response in this context, GPR theoretical models are calculated using information from the literature and hydrogeological field data. The study revealed that in the case of LNAPL floating on the water table in a static condition, there is an increase in the reflection amplitude from the water table due to the decrease in the capillary fringe. Nevertheless the amplitude of reflection from the water table can discriminate the contaminated from the non-contaminated zone. Apart from an analysis of the real traces, the analysis of some attributes of the complex trace, instantaneous amplitude, phase and frequency, are also good tools to detect hydrocarbons floating on the water table. Such attributes, depending on both the signal frequency and the hydrocarbon thickness, can also give information about the thickness of the hydrocarbon layer. It is concluded that analysing the lateral variations in signal amplitude of the real trace and in the amplitude, phase and instantaneous frequency of the complex signal permits the delimiting of the area polluted by the hydrocarbon. [source] Ecohydrological impacts of woody-plant encroachment: seasonal patterns of water and carbon dioxide exchange within a semiarid riparian environmentGLOBAL CHANGE BIOLOGY, Issue 2 2006RUSSELL L. SCOTT Abstract Across many dryland regions, historically grass-dominated ecosystems have been encroached upon by woody-plant species. In this paper, we compare ecosystem water and carbon dioxide (CO2) fluxes over a grassland, a grassland,shrubland mosaic, and a fully developed woodland to evaluate potential consequences of woody-plant encroachment on important ecosystem processes. All three sites were located in the riparian corridor of a river in the southwest US. As such, plants in these ecosystems may have access to moisture at the capillary fringe of the near-surface water table. Using fluxes measured by eddy covariance in 2003 we found that ecosystem evapotranspiration (ET) and net ecosystem exchange of carbon dioxide (NEE) increased with increasing woody-plant dominance. Growing season ET totals were 407, 450, and 639 mm in the grassland, shrubland, and woodland, respectively, and in excess of precipitation by 227, 265, and 473 mm. This excess was derived from groundwater, especially during the extremely dry premonsoon period when this was the only source of moisture available to plants. Access to groundwater by the deep-rooted woody plants apparently decouples ecosystem ET from gross ecosystem production (GEP) with respect to precipitation. Compared with grasses, the woody plants were better able to use the stable groundwater source and had an increased net CO2 gain during the dry periods. This enhanced plant activity resulted in substantial accumulation of leaf litter on the soil surface that, during rainy periods, may lead to high microbial respiration rates that offset these photosynthetic fluxes. March,December (primary growing season) totals of NEE were ,63, ,212, and ,233 g C m,2 in the grassland, shrubland, and woodland, respectively. Thus, there was a greater disparity between ecosystem water use and the strength of the CO2 sink as woody plants increased across the encroachment gradient. Despite a higher density of woody plants and a greater plant productivity in the woodland than in the shrubland, the woodland produced a larger respiration response to rainfall that largely offset its higher photosynthetic potential. These data suggest that the capacity for woody plants to exploit water resources in riparian areas results in enhanced carbon sequestration at the expense of increased groundwater use under current climate conditions, but the potential does not scale specifically as a function of woody-plant abundance. These results highlight the important roles of water sources and ecosystem structure on the control of water and carbon balances in dryland areas. [source] A Simple Model of Soil-Gas Concentrations Sparged into an Unlined Unsaturated ZoneGROUND WATER MONITORING & REMEDIATION, Issue 2 2003David W. Ostendorf We derive an analytical model of soil-gas contamination sparged into an imlined unsaturated zone. A nonaqueous phase liquid (NAPL) source lies in the capillary fringe, with an exponential sparge constant within the radius of influence and a constant ambient evaporation rate beyond. Advection, diffusion, and dispersion govern the conservative soil-gas response, expressed as a quasi-steady series solution with radial Bessel and hyperbolic vertical dependence. Simulations suggest that sparged contamination initially spreads beyond the radius of influence down a negative gradient. This gradient eventually reverses, leading to a subsequent influx of ambient contamination. Soil-gas concentrations accordingly reflect slowly varying source conditions as well as slowly varying diffusive transport through the radius of influence. The two time scales are independent: One depends on NAPL, airflow, and capillary fringe characteristics, the other on soil moisture, gaseous diffusivity, and unsaturated zone thickness. The influx of ambient contamination generates an asymptotic soil-gas concentration much less than the initial source concentration. The simple model is applied to a pilot-scale sparging study at Plattsburgh Air Force Base in upstate New York, with physically plausible results. [source] Recharge, upflux and water table response for shallow water table conditions in southwest FloridaHYDROLOGICAL PROCESSES, Issue 9 2006Fouad H. Jaber Abstract A disproportionate increase or decrease in water table in response to minor water input or drainage is observed in shallow water table conditions inside drainage lysimeters. This increase happens because the capillary fringe of the shallow water table reaches up to or near the surface (Wieringermeer effect). The correlations between water table level changes and rainfall, seepage irrigation, drip irrigation, and drainage were analysed. Correlations with rainfall, seepage irrigation, and drainage were high (R2 ranged from 0·46 to 0·97). Drip irrigation had low correlations due to the low rates of application (R2 ranged from 0·26 to 0·44). Conventional methods of calculating recharge, such as multiplying the specific yield with the water table fluctuations, cannot be used for Wieringermeer effect situations. A method using water balance data and soil moisture at different depths in the lysimeters was developed to estimate recharge and upflux. The recharge results were used to develop the apparent specific yield Sya, which could be used to calculate consequent recharge events from water table fluctuation data. Combining the water table fluctuation relationships developed with the Sya value will allow the prediction of recharge from rainfall and irrigation events without the need for soil moisture equipment. Copyright © 2005 John Wiley & Sons, Ltd. [source] Groundwater fluctuations and footslope ferricrete soils in the humid tropical zone of southern CameroonHYDROLOGICAL PROCESSES, Issue 16 2005Emile Temgoua Abstract This paper discusses the relationship between the differentiation of ferruginous accumulations and the variable water saturation of footslope soil patterns. An analysis of the slope morphology of a typical hill in the forest zone of southern Cameroon and a seasonal survey of the levels of groundwaters, springs and rivers were considered in relation to the petrology of different soil patterns. The study site is a tabular hillock whose slopes present a progressive development from steep to gentle slopes. The variable residence time of water within the soil, creating an alternation of reducing and oxidizing conditions, affects soil chemistry, structure and lateral extension of the soil patterns. The ferruginous soil patterns, being formed on the footslopes, gradually increase in extent with decreasing slope angle and the relative rise of the groundwater level. The steep footslopes, where groundwater has a shorter residence time, show a soft mottled clay pattern, restricted to the bottom part of the slope. The moderate footslopes exhibit a deep permanent and a temporary perched groundwater table. The latter, with its regular capillary fringe, contributes to more reducing conditions within isolated domains in the soil patterns, and thus to the alternation with oxidizing conditions, generating a continuous hard soil pattern (massive carapace). The more gently dipping footslopes exhibit groundwater levels near the surface and also a significant amplitude of groundwater fluctuation. Iron, previously accumulated in moderate footslope patterns, is reduced, remobilized, and leached. The soil patterns formed develop into a variegated carapace, more extended along the slope, containing less iron, but nevertheless more hardened, due to the important fluctuations of the groundwater table. These patterns are limited to the zone of groundwater fluctuation and deteriorate as the water fluctuation zone recedes. Copyright © 2005 John Wiley & Sons, Ltd. [source] Hydrology and nitrogen balance of a seasonally inundated Danish floodplain wetlandHYDROLOGICAL PROCESSES, Issue 3 2004Hans Estrup Andersen Abstract This paper characterizes a seasonally inundated Danish floodplain wetland in a state close to naturalness and includes an analysis of the major controls on the wetland water and nitrogen balances. The main inputs of water are precipitation and percolation during ponding and unsaturated conditions. Lateral saturated subsurface flow is low. The studied floodplain owes its wetland status to the hydraulic properties of its sediments: the low hydraulic conductivity of a silt,clay deposit on top of the floodplain maintains ponded water during winter, and parts of autumn and spring. A capillary fringe extends to the soil surface, and capillary rise from groundwater during summer maintains near-saturated conditions in the root zone, and allows a permanently very high evapotranspiration rate. The average for the growing season of 1999 is 3·6 mm day,1 and peak rate is 5·6 mm day,1. In summer, the evapotranspiration is to a large degree supplied by subsurface storage in a confined peat layer underlying the silt,clay. The floodplain sediments are in a very reduced state as indicated by low sulphate concentrations. All nitrate transported into the wetland is thus denitrified. However, owing to modest water exchange with surrounding groundwater and surface water, denitrification is low; 71 kg NO3,N ha,1 during the study period of 1999. Reduction of nitrate diffusing into the sediments during water ponding accounts for 75% of nitrate removal. Biomass production and nitrogen uptake in above-ground vegetation is high,8·56 t dry matter ha,1 year,1 and 103 kg N ha,1 year,1. Subsurface ammonium concentrations are high, and convective upward transport into the root zone driven by evapotranspiration amounted to 12·8 kg N ha,1year,1. The floodplain wetland sediments have a high nitrogen content, and conditions are very favourable for mineralization. Mineralization thus constitutes 72% of above-ground plant uptake. The study demonstrates the necessity of identifying controlling factors, and to combine surface flow with vadose and groundwater flow processes in order to fully comprehend the flow and nitrogen dynamics of this type of wetland. Copyright © 2004 John Wiley & Sons, Ltd. [source] Life on the edge , to which degree does phreatic water sustain vegetation in the periphery of the Taklamakan Desert?APPLIED VEGETATION SCIENCE, Issue 1 2010Helge Bruelheide Abstract Questions: Do the vegetation-specific patterns in the forelands of river oases of the Taklamakan Desert provide clues to the degree to which a vegetation type depends on unsaturated soil moisture, brought about by extensive floodings, or phreatic water? Location: Foreland of the Qira oasis on the southern rim of the Taklamakan Desert, Xinjiang Uygur Autonomous Region, China. Methods: A vegetation map was prepared using a SPOT satellite image and ground truthing. Measurements of soil water contents were obtained from a flooding experiment and transformed into water potentials. Sum excedance values were calculated as the percentage of days on which different thresholds of soil water potentials were transgressed. Groundwater depth was mapped by drilling 30 groundwater holes and extrapolating the distances to the whole study area. Results: The vegetation was characterized by only six dominant or codominant species: Alhagi sparsifolia, Karelinia caspia, Populus euphratica, Tamarix ramosissima, Calligonum caput-medusae and Phragmites australis. The vegetation patterns encountered lacked any linear features typical of phreatophytes, thus not allowing direct conclusions on the type of the sustaining water sources. Soil water potentials never transgressed a threshold of pF 5 (,10 MPa) in horizons above the capillary fringe during periods without inundation, thus representing water not accessible for plants. Depth to the groundwater ranged between 2.3 and 17.5 m among plots and varied between 1.7 and 8.0 m within a plot owing to dune relief. The seven main vegetation types showed distinct niches of groundwater depths, corresponding to the observed concentric arrangement of vegetation types around the oasis. Conclusions: Inundation by flooding and unsaturated soil moisture are irrelevant for the foreland vegetation water supply. Although distances to the groundwater table can reach about 20 m, which is exceptionally large for phreatophytes, groundwater is the only water source for all vegetation types in the oasis foreland. In consequence, successful maintenance of oasis foreland vegetation will crucially depend on providing non-declining ground water tables. [source] |