Capillary Endothelium (capillary + endothelium)

Distribution by Scientific Domains


Selected Abstracts


Similarity of permeabilities for Ficoll, pullulan, charge-modified albumin and native albumin across the rat peritoneal membrane

ACTA PHYSIOLOGICA, Issue 4 2009
D. Asgeirsson
Abstract Aim:, Compared to neutral globular proteins, neutral polysaccharides, such as dextran, pullulan and Ficoll, appear hyperpermeable across the glomerular filtration barrier. This has been attributed to an increased flexibility and/or asymmetry of polysaccharides. The present study investigates whether polysaccharides are hyperpermeable also across the continuous capillaries in the rat peritoneum. Methods:, In anaesthetized Wistar rats, FITC,Ficoll or FITC,pullulan together with 125I-human serum albumin (RISA) or neutralized 125I-bovine serum albumin (nBSA) were given intravenously, after which peritoneal dialysis (PD) using conventional PD fluid (Gambrosol 1.5%) was performed for 120 min. Concentrations of FITC-polysaccharides and radioactive albumin species in plasma and dialysis fluid were analysed with high-performance size exclusion chromatography and a gamma counter respectively. Transperitoneal clearance values were calculated for polysaccharides in the molecular radius range 36,150 Å, and for RISA and nBSA. Results:, Ficoll and pullulan showed more or less identical permeabilities, compared to RISA and nBSA, across the peritoneal membrane. Although RISA-clearance, 5.50 ± 0.28 (,L min,1; ±SEM), tended to be lower than the clearances of Ficoll36Å (6.55 ± 0.25), pullulan36Å (6.08 ± 0.22) and nBSA (6.56 ± 0.23), the difference was not statistically significant. This is in contrast to the hyperpermeability exhibited by polysaccharides across the glomerular filtration barrier and also contrasts with the charge selectivity of the latter. Conclusion:, The phenomenon of molecular flexibility is more important for a macromolecule's permeability through the glomerular filter than across the continuous peritoneal capillary endothelium. Furthermore, it seems that charge plays a subordinate role in the steady-state transport across the combined peritoneal capillary,interstitial barrier. [source]


Effects of normobaric hyperoxia on water content in different organs in rats

ACTA PHYSIOLOGICA, Issue 1 2002
L. E. B. Stuhr
ABSTRACT Pulmonary oxygen toxicity is a dose-dependent effect on alveolar epithelial and endothelial cells resulting in pulmonary oedema. Any concomitant effects on systemic capillary endothelium would be expected to result in capillary leakage and an increase in the tissues' water content. Total tissue water (TTW) in different organs was therefore studied in freely moving rats exposed to 100% O2 at normobaric pressure for 24 or 48 h, and compared to air-breathing control rats. The TTW for the following tissues was measured: Trachea, left bronchus, left lung, left and right ventricle, left kidney, skin (left paw-hindlimb), skin (back of the rat), left brain, left eye and thigh muscle left side. There was a significant increase in TTW of the lung accompanied by pleural effusion after 48 h of oxygen exposure as expected in all exposed animals. There was a small increase in TTW of the paw only, and a small decrease or no change in other tissues after 24 and 48 h of exposure. We conclude that there is no evidence of systemic capillary dysfunction as measured by tissue water content after exposure to hyperoxia in a dosage causing pulmonary oedema. [source]


Expression of the Multidrug Transporter P-glycoprotein in Brain Capillary Endothelial Cells and Brain Parenchyma of Amygdala-kindled Rats

EPILEPSIA, Issue 7 2002
Ulrike Seegers
Summary: ,Purpose: Based on data from brain biopsy samples of patients with pharmacoresistant partial epilepsy, overexpression of the multidrug transporter P-glycoprotein (PGP) in brain capillary endothelium has recently been proposed as a potential mechanism of resistance to antiepileptic drugs (AEDs). We examined whether PGP is overexpressed in brain regions of amygdala-kindled rats, a widely used model of temporal lobe epilepsy (TLE), which is often resistant to AEDs. Methods: Rats were kindled by stimulation of the basolateral amygdala (BLA); electrode-implanted but nonkindled rats and naive (not implanted) rats served as controls. PGP was determined by immunohistochemistry either 1 or 2 weeks after the last kindled seizure, by using a monoclonal anti-PGP antibody. Six brain regions were examined ipsi- and contralateral to the BLA electrode: the BLA, the hippocampal formation, the piriform cortex, the substantia nigra, the frontal and parietal cortex, and the cerebellum. Results: In both kindled rats and controls, PGP staining was observed mainly in microvessel endothelial cells and, to a much lesser extent, in parenchymal cells. The distribution of PGP expression across brain regions was not homogeneous, but significant differences were found in both the endothelial and parenchymal expression of this protein. In kindled rats, ipsilateral PGP expression tended to be higher than contralateral expression in several brain regions, which was statistically significant in the piriform cortex and parietal cortex. However, compared with controls, no significant overexpression of PGP in capillary endothelial cells or brain parenchyma of kindled rats was seen in any ipsilateral brain region, including the BLA. For comparison with kindled rats, kainate-treated rats were used as positive controls. As reported previously, kainate-induced seizures significantly increased PGP expression in the hippocampus and other limbic brain regions. Conclusions: Amygdala-kindling does not induce any lasting overexpression of PGP in several brain regions previously involved in the kindling process. In view of the many pathophysiologic and pharmacologic similarities between the kindling model and TLE, these data may indicate that PGP overexpression in pharmacoresistant patients with TLE is a result of uncontrolled seizures but not of the processes underlying epilepsy. It remains to be determined whether transient PGP overexpression is present in kindled rats shortly after a seizure, and whether pharmacoresistant subgroups of kindled rats exhibit an increased expression of PGP. Furthermore, other multidrug transporters, such as multidrug resistance,associated protein, might be involved in the resistance of kindled rats to AEDs. [source]


New concepts in bilirubin encephalopathy

EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, Issue 11 2003
J. D. Ostrow
Abstract Revised concepts of bilirubin encephalopathy have been revealed by studies of bilirubin toxicity in cultured CNS cells and in congenitally jaundiced Gunn rats. Bilirubin neurotoxicity is related to the unbound (free) fraction of unconjugated bilirubin (Bf), of which the dominant species at physiological pH is the protonated diacid, which can passively diffuse across cell membranes. As the binding affinity of plasma albumin for bilirubin decreases strikingly as albumin concentration increases, previously reported Bf values were underestimated. Newer diagnostic tests can detect reversible neurotoxicity before permanent damage occurs from precipitation of bilirubin (kernicterus). Early toxicity can occur at Bf only modestly above aqueous saturation and affects astrocytes and neurons, causing mitochondrial damage, resulting in impaired energy metabolism and apoptosis, plus cell-membrane perturbation, which causes enzyme leakage and hampers transport of neurotransmitters. The concentrations of unbound bilirubin in the cerebro-spinal fluid and CNS cells are probably limited mainly by active export of bilirubin back into plasma, mediated by ABC transporters present in the brain capillary endothelium and choroid plexus epithelium. Intracellular bilirubin levels may be diminished also by oxidation, conjugation and binding to cytosolic proteins. These new concepts may explain the varied susceptibility of neonates to develop encephalopathy at any given plasma bilirubin level and the selective distribution of CNS lesions in bilirubin encephalopathy. They also can suggest better strategies for predicting, preventing and treating this syndrome. [source]


PRECLINICAL STUDY: Disposition of ,9 tetrahydrocannabinol in CF1 mice deficient in mdr1a P-glycoprotein

ADDICTION BIOLOGY, Issue 3-4 2008
Laurence Bonhomme-Faivre
ABSTRACT P-glycoprotein (P-gp) plays a major role in drug efflux. All the transported substrates are more or less hydrophobic and amphiphatic in nature. Being lipophilic, ,9 tetrahydrocannabinol (THC), the main cannabis component, could be a potential P-gp substrate. The aim of this project was to determine the contribution of the mdr1a gene product to THC disposition. Therefore, oral THC and digoxin (substrate test for P-gp) pharmacokinetics have been investigated in the intestinal epithelium and in the brain capillary endothelium of CF1 mdr1a (,/,) mice (mice naturally deficient in P-gp). These pharmacokinetics were compared to THC and digoxin oral pharmacokinetics in wild type mice mdr1a (+/+) (not P-gp deficient). The application of Bailer's method showed that THC total exposure measured by the area under the plasma concentration time curve was 2.17-fold higher in CF1 mice naturally deficient in P-gp than in wild type mice after oral administration of 25 mg/kg of THC, and 2.4-fold higher after oral administration of 33 µg/kg of digoxin. As a consequence, the oral bioavailability of THC and digoxin was higher in naturally P-gp-deficient mice. We concluded that P-gp limits THC oral uptake and mediates direct drug excretion from the systemic circulation into the intestinal lumen. [source]


Capillary supply and gene expression of angiogenesis-related factors in murine skeletal muscle following denervation

EXPERIMENTAL PHYSIOLOGY, Issue 3 2005
A. Wagatsuma
Capillary supply of skeletal muscle decreases during denervation. To gain insight into the regulation of this process, we investigated capillary supply and gene expression of angiogenesis-related factors in mouse gastrocnemius muscle following denervation for 4 months. Frozen transverse sections were stained for alkaline phosphatase to detect endogenous enzyme in the capillary endothelium. The mRNA for angiogenesis-related factors, including hypoxia inducible factor-1, (HIF-1,), vascular endothelial growth factor (VEGF), kinase insert domain-containing receptor/fetal liver kinase-1 (KDR/Flk-1), fms-like tyrosine kinase (Flt-1), angiopoietin-1 and tyrosine kinase with Ig and epidermal growth factor(EGF) homology domain 2 (Tie-2), was analysed using a semi-quantitative reverse transcriptase-polymerase chain reaction (RT-PCR). The fibre cross-sectional area after denervation was about 20% of the control value, and the capillary to fibre ratio was significantly lower in denervated than in control muscles. The number of capillaries around each fibre also decreased to about 40% of the control value. These observations suggest that muscle capillarity decreases in response to chronic denervation. RT-PCR analysis showed that the expression of VEGF mRNA was lower in denervated than in control muscles, while the expression of HIF-1, mRNA remained unchanged. The expression levels of the KDR/Flk-1 and Flt-1 genes were decreased in the denervated muscle. The expression levels of angiopoietin-1 but not Tie-2 genes were decreased in the denervated muscle. These findings indicate that reduction in the expression of mRNAs in the VEGF/KDR/Flk-1 and Flt-1 as well as angiopoietin-1/Tie-2 signal pathways might be one of the reasons for the capillary regression during chronic denervation. [source]


Combined Confocal Microscopy and Stereology: a Highly Efficient and Unbiased Approach to Quantitative Structural Measurement in Tissues

EXPERIMENTAL PHYSIOLOGY, Issue 6 2002
Katherine Howell
Understanding the relationship of the structure of organs to their function is a key component of integrative physiological research. The structure of the organs of the body is not constant but changes, both during growth and development and under conditions of sustained stress (e.g. high altitude exposure and disease). Recently, powerful new techniques have become available in molecular biology, which promise to provide novel insights into the mechanisms and consequences of these altered structure-function relationships. Conventionally structure-function relationships are studied by microscopic examination of tissue sections. However, drawing conclusions about the three-dimensional structure of an organ based on this two-dimensional information frequently leads to serious errors. The techniques of stereology allow precise and accurate quantification of structural features within three-dimensional organs that relate in a meaningful way to integrated function. For example, knowledge of changes in the total surface area of the capillary endothelium in an organ can be related directly to changes in fluid filtration and permeability, or knowledge of total vessel length and mean radius allows deductions about vascular resistance. Confocal microscopy adds enormously to the power of stereological approaches. It reduces the difficulties and labour involved in obtaining suitable images. Moreover, when used in conjunction with new analytical software, it allows convenient application of stereology to small samples and those in which it is essential to maintain a specific orientation for interpretation. The information obtained will allow us to examine in a quantitative manner the altered structure-function relationships produced by manipulation of single genes and regulatory pathways in whole organisms. [source]


Vascular endothelium: the battlefield of dengue viruses

FEMS IMMUNOLOGY & MEDICAL MICROBIOLOGY, Issue 3 2008
Atanu Basu
Abstract Increased vascular permeability without morphological damage to the capillary endothelium is the cardinal feature of dengue haemorrhagic fever (DHF)/dengue shock syndrome (DSS). Extensive plasma leakage in various tissue spaces and serous cavities of the body, including the pleural, pericardial and peritoneal cavities in patients with DHF, may result in profound shock. Among various mechanisms that have been considered include immune complex disease, T-cell-mediated, antibodies cross-reacting with vascular endothelium, enhancing antibodies, complement and its products, various soluble mediators including cytokines, selection of virulent strains and virus virulence, but the most favoured are enhancing antibodies and memory T cells in a secondary infection resulting in cytokine tsunami. Whatever the mechanism, it ultimately targets vascular endothelium (making it a battlefield) leading to severe dengue disease. Extensive recent work has been done in vitro on endothelial cell monolayer models to understand the pathophysiology of vascular endothelium during dengue virus (DV) infection that may be translated to help understand the pathogenesis of DHF/DSS. The present review provides a broad overview of the effects of DV infection and the associated host responses contributing towards alterations in vascular endothelial cell physiology and damage that may be responsible for the DHF/DSS. [source]


Age-related changes in blood capillary endothelium of human dental pulp: an ultrastructural study

INTERNATIONAL ENDODONTIC JOURNAL, Issue 6 2003
A. I. Espina
Abstract Aim, To describe the ultrastructural changes that occur in pulpal blood capillaries as a result of ageing. Methodology, Thirty samples of healthy dental pulps were obtained from functional human permanent teeth. Two age groups were examined: young (10,17 years) and old (>60 years). The teeth were extracted under local anaesthesia using mepivacaine without adrenaline (Scandonest 3%, Septodont, Saint-Maur des Fossés, France) and split longitudinally in a bench press. The pulps were gently removed, immersed in fixative solution, sectioned and processed by conventional transmission electron microscopic techniques. Micrographs were taken from the endothelium, and the whole capillary area of each vessel was examined. Results, In young pulps, the endothelial cell layer was characterized by the presence of numerous pinocytotic vesicles and microvesicles, RER cisterns, free ribosomes, a small Golgi complex, centrioles, microtubules, microfilaments and mitochondria. In the endothelial cell cytoplasm of older pulpal vessels, pinocytotic vesicles and microvesicles, as well as microfilaments, were more numerous. In addition, lipid-like vacuoles, monogranular glycogen granules and extensive Golgi complexes with dilated cisterns were also present. Weibel-Palade bodies were observed in both age groups without showing variations related with age. Conclusions, The results obtained in capillaries of aged pulpal tissue suggest that the endothelium experiences morphological changes that could be associated with advancing age. [source]


Pathological and epidemiological observations on rickettsiosis in cultured sea bass (Dicentrarchus labrax L.) from Greece

JOURNAL OF APPLIED ICHTHYOLOGY, Issue 6 2004
F. Athanassopoulou
Summary A systemic infection of a Rickettsia -like organism (RLO) in cultured sea bass is described for the first time. In hatcheries, clinical signs were lethargy, inappetence and discoloration. Twenty days after transfer to sea cages from hatcheries where the disease existed, fish showed erratic and abnormal swimming behaviour, loss of orientation, and lethargy. Cumulative mortality in colder months of the year reached 30% in hatcheries and 80% in cages. Surviving fish in cages did not show any clinical signs of RLO infection in the subsequent year. Evidence for a systemic distribution of RLO was supported by histolopathological lesions in both infected hatchery and caged fish, where the lesion profile included cranial sensory, central nervous, integumental and alimentary organ systems. Intracranial lesions were primarily characterized by an ascending histiocytic perineuritis and necrotizing congestive meningoencephalitis, with evidence for transfer of infective agents across the blood,brain barrier confirmed by the presence of RLOs within capillary endothelium and histiocytes in inflamed regions of the optic tectum and the cerebellum. In the most severe cases, infection spread to the statoacoustical (semicircular) canal system and the ependymal lining of ventricles, with marked rickettsial-laden histiocytic infiltration of the canal lumen. Integumental lesions were restricted to the oral submucosa, nares and integumental dermis of the cranium. Alimentary lesions were noted in both the liver parenchyma and mucosa/submucosa of the stomach. In all affected organs the RLOs were found by immunohistochemistry to be related to Piscirickettsia salmonis. [source]


An immune-complex glomerulonephritis of Chinook salmon, Oncorhynchus tshawytscha (Walbaum)

JOURNAL OF FISH DISEASES, Issue 12 2008
J S Lumsden
Abstract Chinook salmon from New Zealand were shown to have a generalized membranous glomerulonephritis that was most severe in large fish. Marked thickening of the glomerular basement membrane was the most consistent lesion, with the presence of an electron-dense deposit beneath the capillary endothelium. Severely affected glomeruli also had expansion of the mesangium and loss of capillaries, synechiae of the visceral and parietal epithelium and mild fibrosis of Bowman's capsule. Chinook salmon from British Columbia, Canada with bacterial kidney disease caused by Renibacterium salmoninarum had similar histological lesions. They also had thickened glomerular basement membranes that were recognized by rabbit antiserum to rainbow trout immunoglobulin. This was true only when frozen sections of kidney were used and not formalin-fixed tissue. An attempt to experimentally produce a glomerulopathy in rainbow trout by repeated immunization with killed R. salmoninarum was not successful. Case records from the Fish Pathology Laboratory at the University of Guelph over a 10-year period revealed that a range of species were diagnosed with glomerulopathies similar to those seen in Chinook salmon. The majority of these cases were determined to have chronic inflammatory disease. This report has identified the presence of immunoglobulin within thickened basement membranes of Chinook salmon with glomerulonephritis and supports the existence of type III hypersensitivity in fish. [source]


Renal ACE2 expression in human kidney disease,

THE JOURNAL OF PATHOLOGY, Issue 5 2004
AT Lely
Abstract Angiotensin-converting enzyme 2 (ACE2) is a recently discovered homologue of angiotensin-converting enzyme (ACE) that is thought to counterbalance ACE. ACE2 cleaves angiotensin I and angiotensin II into the inactive angiotensin 1,9, and the vasodilator and anti-proliferative angiotensin 1,7, respectively. ACE2 is known to be present in human kidney, but no data on renal disease are available to date. Renal biopsies from 58 patients with diverse primary and secondary renal diseases were studied (hypertensive nephropathy n = 5, IgA glomerulopathy n = 8, minimal change nephropathy n = 7, diabetic nephropathy n = 8, focal glomerulosclerosis n = 5, vasculitis n = 7, and membranous glomerulopathy n = 18) in addition to 17 renal transplants and 18 samples from normal renal tissue. Immunohistochemical staining for ACE2 was scored semi-quantitatively. In control kidneys, ACE2 was present in tubular and glomerular epithelium and in vascular smooth muscle cells and the endothelium of interlobular arteries. In all primary and secondary renal diseases, and renal transplants, neo-expression of ACE2 was found in glomerular and peritubular capillary endothelium. There were no differences between the various renal disorders, or between acute and chronic rejection and control transplants. ACE inhibitor treatment did not alter ACE2 expression. In primary and secondary renal disease, and in transplanted kidneys, neo-expression of ACE2 occurs in glomerular and peritubular capillary endothelium. Further studies should elucidate the possible protective mechanisms involved in the de novo expression of ACE2 in renal disease. Copyright © 2004 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. [source]


Angiogenesis in patients with craniopharyngiomas

CANCER, Issue 3 2002
Correlation with treatment, outcome
Abstract BACKGROUND Craniopharyngiomas are histologically benign epithelial neoplasms of the sellar region that often exhibit aggressive and invasive growth. The authors hypothesized that tumor proliferation, spread, and recurrence are angiogenesis dependent and investigated the significance of vascularization relative to biologic behavior. To the authors' knowledge, angiogenesis for patients with craniopharyngiomas has not been examined to date. METHODS The authors measured microvessel densities in resected, histologically proven craniopharyngiomas using immunostains for CD-34, a monoclonal antibody that selectively recognizes endothelial cells. Both histologic types of craniopharyngiomas, adamantinomatous and papillary, were included in the study. In addition, the cellular distribution of vascular endothelial growth factor (VEGF), a strong stimulator of new vessel formation, was assessed by both immunohistochemistry and in situ hybridization for VEGF receptor 2 (VEGFR-2) mRNA expression. RESULTS Histologically, small numbers of capillaries were identified in temporal stroma but not in their epithelial components. Immunohistochemistry revealed strong, conclusive cytoplasmic immunoreactivity for VEGF in the epithelial cells of both adamantinomatous craniopharyngiomas and papillary craniopharyngiomas. In situ hybridization showed that VEGFR-2 mRNA was expressed widely, not only in neoplastic epithelium but also in capillary endothelium. CONCLUSIONS Tumors with greater microvessel density regrow more frequently compared with tumors that have lower microvessel density, suggesting that the extent of angiogenesis is of prognostic value in patients with craniopharyngioma. VEGFR-2 may act as a key modulator of VEGF activity in endothelial cells and nonendothelial cells, indicating that VEGF plays an important role in the behavior of craniopharyngiomas. Cancer 2002;94:738,45. © 2002 American Cancer Society. DOI 10.1002/cncr.10281 [source]