Canonical Wnt Pathway (canonical + wnt_pathway)

Distribution by Scientific Domains


Selected Abstracts


Tankyrase is necessary for canonical Wnt signaling during kidney development

DEVELOPMENTAL DYNAMICS, Issue 7 2010
Courtney M. Karner
Abstract Recent studies using small molecule antagonists have revealed that the poly(ADP-ribose) polymerases (PARPs) Tankyrase 1 and 2 are critical regulators of canonical Wnt signaling in some cellular contexts. However, the absence of any activity during zebrafish embryogenesis suggested that the tankyrases may not be general/core components of the Wnt pathway. Here, we show that Tnks1 and 2 are broadly expressed during mouse development and are essential during kidney and lung development. In the kidney, blockage of tankyrase activity phenocopies the effect of blocking production of all Wnt ligands. Tankyrase inhibition can be rescued by activation of ,-catenin demonstrating its specificity for the Wnt pathway. In addition, treatment with tankyrase inhibitors appears to be completely reversible in some cell types. These studies suggest that the tankyrases are core components of the canonical Wnt pathway and their inhibitors should enjoy broad usage as antagonists of Wnt signaling. Developmental Dynamics 239:2014,2023, 2010 © 2010 Wiley-Liss, Inc. [source]


Inhibition of Canonical Wnt Signaling Increases Microvascular Hemorrhaging and Venular Remodeling in Adult Rats

MICROCIRCULATION, Issue 5 2010
JASON T. GLAW
Microcirculation (2010) 17, 348,357. doi: 10.1111/j.1549-8719.2010.00036.x Abstract Objective:, The canonical Wnt signaling pathway, heavily studied in development and cancer, has recently been implicated in microvascular growth with the use of developmental and in vitro models. To date, however, no study exists showing the effects of perturbing the canonical Wnt pathway in a complete microvascular network undergoing physiological remodeling in vivo. Our objective was to investigate the effects of canonical Wnt inhibition on the microvascular remodeling of adult rats. Methods:, Canonical Wnt inhibitor DKK-1, Wnt inhibitor sFRP-1, BSA or saline was superfused onto the exteriorized mesenteric windows of 300 g adult female Sprague-Dawley rats for 20 minutes. Three days following surgery, mesenteric windows were imaged intravitally and harvested for immunofluorescence staining with smooth muscle alpha-actin and BRDU. Results:, We observed prominent differences in the response of the mesenteric microvasculature amongst the various treatment groups. Significant increases in hemorrhage area, vascular density, and draining vessel diameter were observed in windows treated with Wnt inhibitors as compared to control-treated windows. Additionally, confocal imaging analysis showed significant increases in proliferating cells as well as evidence of proliferating smooth muscle cells along venules. Conclusions:, Together, our results suggest that canonical Wnt inhibition plays an important role in microvascular remodeling, specifically venular remodeling. [source]


Wnt Pathway Regulation in Chronic Renal Allograft Damage

AMERICAN JOURNAL OF TRANSPLANTATION, Issue 10 2009
C. Von Toerne
The Wnt signaling pathway, linked to development, has been proposed to be recapitulated during the progressive damage associated with chronic organ failure. Chronic allograft damage following kidney transplantation is characterized by progressive fibrosis and a smoldering inflammatory infiltrate. A modified, Fischer 344 (RT1lvl) to Lewis (RT1l) rat renal allograft model that reiterates many of the major pathophysiologic processes seen in patients with chronic allograft failure was used to study the progressive disease phenotype and specific gene product expression by immunohistochemistry and transcriptomic profiling. Central components of the Tgfb, canonical Wnt and Wnt-Ca2+ signaling pathways were significantly altered with the development of chronic damage. In the canonical Wnt pathway, Wnt3, Lef1 and Tcf1 showed differential regulation. Target genes Fn1, Cd44, Mmp7 and Nos2 were upregulated and associated with the progression of renal damage. Changes in the Wnt-Ca2+ pathway were evidenced by increased expression of Wnt6, Wnt7a, protein kinase C, Cam Kinase II and Nfat transcription factors and the target gene vimentin. No evidence for alterations in the Wnt planar cell polarity (PCP) pathway was detected. Overall results suggest cross talk between the Wnt and Tgfb signaling pathways during allograft inflammatory damage and present potential targets for therapeutic intervention. [source]


Epigenetic regulation of the non-canonical Wnt pathway in acute myeloid leukemia

CANCER SCIENCE, Issue 2 2010
Vanesa Martín
Wnt5a is a member of the Wnt family of proteins that signals through the non-canonical Wnt/Ca2+pathway to suppress cyclin D1. Deregulation of this pathway has been found in animal models suggesting that it acts as tumour suppressor in acute myeloid leukemia (AML). Although DNA methylation is the main mechanism of regulation of the canonical Wnt pathway in AML, the role of WNT5A abnormalities has never been evaluated in this clinical setting. The methylation status of WNT5A promoter,exon 1 was analyzed by methylation-specific PCR and sequencing in eleven AML-derived cell lines and 252 AML patients. We observed WNT5A hypermethylation in seven cell lines and in 43% (107/252) of AML patients. WNT5A methylation was associated with decreased WNT5A expression (P < 0.001) that was restored after exposure to 5-Aza-2'-deoxycytidine. Moreover, WNT5A hypermethylation correlated with upregulation of CYCLIN D1 expression (P < 0.001). Relapse (15%vs 37%, P < 0.001) and mortality (61%vs 79%, P = 0.004) rates were lower for patients in the non-methylated group. Disease-free survival and overall survival at 6 and 7 years, respectively, were 60% and 27% for unmethylated patients and 20% and 0% for hypermethylated patients (P = 0.0001 and P = 0.04, respectively). Interestingly, significant differences were also observed when the analysis was carried out according to cytogenetic risk groups. We demonstrate that WNT5A, a putative tumor suppressor gene in AML, is silenced by methylation in this disease and that this epigenetic event is associated with upregulation of CYCLIN D1 expression and confers poor prognosis in patients with AML. (Cancer Sci 2009) [source]