| |||
Canonical Pathway (canonical + pathway)
Selected AbstractsPulsating fluid flow modulates gene expression of proteins involved in Wnt signaling pathways in osteocytesJOURNAL OF ORTHOPAEDIC RESEARCH, Issue 10 2009Ana Santos Abstract Strain-derived flow of interstitial fluid activates signal transduction pathways in osteocytes that regulate bone mechanical adaptation. Wnts are involved in this process, but whether mechanical loading modulates Wnt signaling in osteocytes is unclear. We assessed whether mechanical stimulation by pulsating fluid flow (PFF) leads to functional Wnt production, and whether nitric oxide (NO) is important for activation of the canonical Wnt signaling pathway in MLO-Y4 osteocytes. MC3T3-E1 osteoblasts were studied as a positive control for the MLO-Y4 osteocyte response to mechanical loading. MLO-Y4 osteocytes and MC3T3-E1 osteoblasts were submitted to 1-h PFF (0.7,±,0.3 Pa, 5 Hz), and postincubated (PI) without PFF for 0.5,3 h. Gene expression of proteins related to the Wnt canonical and noncanonical pathways were studied using real-time polymerase chain reaction (PCR). In MLO-Y4 osteocytes, PFF upregulated gene expression of Wnt3a, c-jun, connexin 43, and CD44 at 1,3-h PI. In MC3T3-E1 osteoblasts, PFF downregulated gene expression of Wnt5a and c-jun at 0.5,3-h PI. In MLO-Y4 osteocytes, gene expression of PFF-induced Wnt target genes was suppressed by the Wnt antagonist sFRP4, suggesting that loading activates the Wnt canonical pathway through functional Wnt production. The NO inhibitor L-NAME suppressed the effect of PFF on gene expression of Wnt target genes, suggesting that NO might play a role in PFF-induced Wnt production. The response to PFF differed in MC3T3-E1 osteoblasts. Because Wnt signaling is important for bone mass regulation, osteocytes might orchestrate loading-induced bone remodeling through, among others, Wnts. © 2009 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 27:1280,1287, 2009 [source] Genes Associated With Alcohol Abuse and Tobacco Smoking in the Human Nucleus Accumbens and Ventral Tegmental AreaALCOHOLISM, Issue 7 2010Traute Flatscher-Bader Background:, The incidence of alcohol and tobacco co-abuse is as high as 80%. The molecular mechanism underlying this comorbidity is virtually unknown, but interactions between these drugs have important implications for the development of and recovery from drug dependence. Methods:, We investigated the effects of chronic tobacco and alcohol abuse and the interaction of the 2 behaviors on global gene expression in the human nucleus accumbens using cDNA microarrays and 20 alcoholic and control cases, with and without smoking comorbidity. Changes in gene expression were established by factorial ANOVA. Unsupervised hierarchical clustering was utilized to probe the strength of the data sets. Applying real-time PCR differential expression of candidate genes was confirmed in the nucleus accumbens and explored further in a second core region of the mesolimbic system, the ventral tegmental area. Results:, Subjecting the data sets derived from microarray gene expression screening to unsupervised hierarchical clustering tied the cases into distinct groups. When considering all alcohol-responsive genes, alcoholics were separated from nonalcoholics with the exception of 1 control case. All smokers were distinguished from nonsmokers based on similarity in expression of smoking-sensitive genes. In the nucleus accumbens, alcohol-responsive genes were associated with transcription, lipid metabolism, and signaling. Smoking-sensitive genes were predominantly assigned to functional groups concerned with RNA processing and the endoplasmic reticulum. Both drugs influenced the expression of genes involved in matrix remodeling, proliferation, and cell morphogenesis. Additionally, a gene set encoding proteins involved in the canonical pathway "regulation of the actin cytoskeleton" was induced in response to alcohol and tobacco co-abuse and included. Alcohol abuse elevated the expression of candidate genes in this pathway in the nucleus accumbens and ventral tegmental area, while smoking comorbidity blunted this induction in the ventral tegmental area. Conclusions:, The region-specific modulation of alcohol-sensitive gene expression by smoking may have important consequences for alcohol-induced aberrations within the mesolimbic dopaminergic system. [source] High resolution analysis of follicular lymphoma genomes reveals somatic recurrent sites of copy-neutral loss of heterozygosity and copy number alterations that target single genes,GENES, CHROMOSOMES AND CANCER, Issue 8 2010K-John J. Cheung A multiplatform approach, including conventional cytogenetic techniques, BAC array comparative genomic hybridization, and Affymetrix 500K SNP arrays, was applied to the study of the tumor genomes of 25 follicular lymphoma biopsy samples with paired normal DNA samples to characterize balanced translocations, copy number imbalances, and copy-neutral loss of heterozygosity (cnLOH). In addition to the t(14;18), eight unique balanced translocations were found. Commonly reported FL-associated copy number regions were revealed including losses of 1p32-36, 6q, and 10q, and gains of 1q, 6p, 7, 12, 18, and X. The most frequent regions affected by copy-neutral loss of heterozygosity were 1p36.33 (28%), 6p21.3 (20%), 12q21.2-q24.33 (16%), and 16p13.3 (24%). We also identified by SNP analysis, 45 aberrant regions that each affected one gene, including CDKN2A, CDKN2B, FHIT, KIT, PEX14, and PTPRD, which were associated with canonical pathways involved in tumor development. This study illustrates the power of using complementary high-resolution platforms on paired tumor/normal specimens and computational analysis to provide potential insights into the significance of single-gene somatic aberrations in FL tumorigenesis. © 2010 Wiley-Liss,Inc. [source] Clinical progression in Parkinson disease and the neurobiology of axonsANNALS OF NEUROLOGY, Issue 6 2010Hsiao-Chun Cheng PhD Despite tremendous growth in recent years in our knowledge of the molecular basis of Parkinson disease (PD) and the molecular pathways of cell injury and death, we remain without therapies that forestall disease progression. Although there are many possible explanations for this lack of success, one is that experimental therapeutics to date have not adequately focused on an important component of the disease process, that of axon degeneration. It remains unknown what neuronal compartment, either the soma or the axon, is involved at disease onset, although some have proposed that it is the axons and their terminals that take the initial brunt of injury. Nevertheless, this concept has not been formally incorporated into many of the current theories of disease pathogenesis, and it has not achieved a wide consensus. More importantly, in view of growing evidence that the molecular mechanisms of axon degeneration are separate and distinct from the canonical pathways of programmed cell death that mediate soma destruction, the possibility of early involvement of axons in PD has not been adequately emphasized as a rationale to explore the neurobiology of axons for novel therapeutic targets. We propose that ongoing degeneration of axons, not cell bodies, is the primary determinant of clinically apparent progression of disease, and that future experimental therapeutics intended to forestall disease progression will benefit from a new focus on the distinct mechanisms of axon degeneration. ANN NEUROL 2010;67:715,725 [source] |