| |||
Candidate Therapeutic Target (candidate + therapeutic_target)
Selected AbstractsOsteopontin deficiency impairs wear debris,induced osteolysis via regulation of cytokine secretion from murine macrophagesARTHRITIS & RHEUMATISM, Issue 5 2010Sadanori Shimizu Objective To investigate the molecular mechanisms underlying particle-induced osteolysis, we focused on osteopontin (OPN), a cytokine and cell-attachment protein that is associated with macrophage chemoattractant and osteoclast activation. Methods We compared OPN protein levels in human periprosthetic osteolysis tissues with those in osteoarthritis (OA) synovial tissues. To investigate the functions of OPN during particle-induced osteolysis in vivo, titanium particles were implanted onto the calvaria of OPN-deficient mice and their wild-type (WT) littermates. Mice were killed on day 10 and evaluated immunohistologically. The effects of OPN deficiency on the secretion of inflammatory cytokines were examined using cultured bone marrow,derived macrophages (BMMs). BMMs from OPN-deficient and WT mice were cultured with titanium particles for 12 hours, and the concentrations of inflammatory cytokines in the conditioned media were measured by enzyme-linked immunosorbent assay. Results Expression of OPN protein was enhanced in human periprosthetic osteolysis tissues as compared with OA synovial tissues. In the particle-induced model of osteolysis of the calvaria, bone resorption was significantly suppressed by OPN deficiency via inhibition of osteoclastogenesis, whereas an inflammatory reaction was observed regardless of the genotype. Results of immunostaining indicated that OPN protein was highly expressed in the membrane and bone surface at the area of bone resorption in WT mice. When BMMs were exposed to titanium particles, the concentration of proinflammatory cytokines, such as tumor necrosis factor ,, interleukin-1, (IL-1,), IL-1,, and IL-6, as well as chemotactic factors, such as monocyte chemoattractant protein 1 and macrophage inflammatory protein 1,, in the conditioned medium were significantly reduced by OPN deficiency. Whereas phagocytic activity of BMMs was not attenuated by OPN deficiency, phagocytosis-mediated NF-,B activation was impaired in OPN-deficient BMMs. These data indicated that OPN was implicated in the development of particle-induced osteolysis via the orchestration of pro-/antiinflammatory cytokines secreted from macrophages. Conclusion OPN plays critical roles in wear debris,induced osteolysis, suggesting that OPN is a candidate therapeutic target for periprosthetic osteolysis. [source] B lymphocyte stimulator expression in pediatric systemic lupus erythematosus and juvenile idiopathic arthritis patientsARTHRITIS & RHEUMATISM, Issue 11 2009Sandy D. Hong Objective To assess the expression of B lymphocyte stimulator (BLyS) in patients with pediatric systemic lupus erythematosus (SLE) or juvenile idiopathic arthritis (JIA). Methods Blood samples collected from patients with pediatric SLE (n = 56) and patients with JIA (n = 54) at the beginning and end of a 6-month interval were analyzed for plasma BLyS protein levels by enzyme-linked immunosorbent assay and for blood leukocyte full-length BLyS and ,BLyS messenger RNA (mRNA) levels by quantitative real-time polymerase chain reaction (normalized to 18S expression). Healthy siblings (n = 34) of these patients served as controls. Results In pediatric SLE, plasma BLyS protein and blood leukocyte BLyS mRNA levels were each significantly elevated, and plasma BLyS protein levels, but not blood leukocyte BLyS mRNA levels, were correlated with disease activity. In contrast, plasma BLyS protein levels were normal in JIA despite blood leukocyte BLyS mRNA levels being elevated to degrees similar to those in pediatric SLE. Among JIA patients, neither BLyS parameter was correlated with disease activity. In both pediatric SLE and JIA, the BLyS expression profiles remained stable at 6 months. Conclusion Our findings indicate that, as previously noted in adult SLE, plasma BLyS protein and blood leukocyte BLyS mRNA levels are elevated in pediatric SLE. The correlation of plasma BLyS protein levels with disease activity points to BLyS as a candidate therapeutic target in pediatric SLE. Contrary to previous observations in adults with rheumatoid arthritis, plasma BLyS protein levels are normal in JIA despite elevated blood leukocyte BLyS mRNA levels. The absence of correlation between either of the BLyS parameters and disease activity in JIA calls for circumspection prior to assigning BLyS as a candidate therapeutic target in this disorder. [source] A high-resolution structure of ligand-free human glutamate carboxypeptidase IIACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 3 2007Cyril Barinka Human glutamate carboxypeptidase II (GCPII; EC 3.4.17.21) is an established marker for prostate-cancer diagnosis as well as a candidate therapeutic target for the treatment of diverse pathologies that involve glutamatergic transmission. Structural data on GCPII are thus valuable for the design and optimization of GCPII-specific inhibitors and diagnostic probes. The currently available structure of ligand-free GCPII was refined to a resolution of 3.5,Å. This work reports the structure of the protein refined to 1.65,Å resolution, with crystallographic values of R = 0.207 and Rfree = 0.228. The new structure extends the resolution appreciably and the new model based on this data shows significant differences when compared with the previously published model. [source] Somatic mutations of adenomatous polyposis coli gene and nuclear b-catenin accumulation have prognostic significance in invasive urothelial carcinomas: Evidence for Wnt pathway implicationINTERNATIONAL JOURNAL OF CANCER, Issue 1 2009Efstathios Kastritis Abstract Wnt pathway signaling is crucial in many cancers and data indicate crosstalk with other key cancer pathways, however in urothelial carcinogenesis it has not been extensively studied. We searched for mutations in adenomatous polyposis coli (APC), a key regulator of the pathway, and studied b-catenin expression and interactions with the expression of other markers of apoptosis, angiogenesis, and proliferation in patients with invasive urothelial cancer. The mutation cluster region of APC was directly sequenced in 70 patients with muscle invasive disease who were treated with surgery and adjuvant chemotherapy. COX-2, p53, Ki67, and b-catenin were studied immunohistochemically and micro vessel density was quantified by CD105 expression. Single somatic amino-acid substitutions (missense) were found in 9 (13%) and frameshift deletions in 2 (3%) tumors, all located in regions adjacent to b-catenin binding sites. Patients having either APC missense mutations or b-catenin nuclear accumulation had less frequent COX-2 overexpression (24% vs. 76%, p = 0.043) and more frequent lymph node involvement (75% vs. 38%, p = 0.023). Patients with either APC mutations or b-catenin accumulation had shorter disease-free interval (13.4 vs. 28 months, p = 0.07), whereas in multivariate analysis they had shorter disease-specific survival (60.5 vs. 20.6 months, p = 0.048). Somatic APC missense mutations are not rare in advanced urothelial neoplasms. Either APC mutations and/or aberrant expression of b-catenin are associated with worse outcome. Further study of the role of the Wnt pathway, potential crosstalk with other pathways and potential candidate therapeutic targets in urothelial cancer is needed. © 2008 Wiley-Liss, Inc. [source] Global physicochemical properties as activity discriminants for the mGluR1 subtype of metabotropic glutamate receptorsJOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 16 2001Marta Filizola Abstract Metabotropic glutamate receptors (mGluRs) are important as candidate therapeutic targets for many neurological disorders. In the present work, the focus has been on the mGluR1 subtype, where agonists have a proconvulsant profile while antagonists exert anticonvulsant activity. Identification of molecular determinants for the inhibition of mGluR1 provides a new avenue for the discovery and development of novel anticonvulsant drugs. Spatial configuration of key groups alone cannot explain activation selectivity at this specific receptor subtype. In fact, all known agonists and antagonists acting at mGluR1 can accommodate the same critical moieties in a similar geometric arrangement that corresponds to the extended conformation of glutamate. Therefore, other factors must account for the differences in activation. This study presents the results of an analysis of a large suite of steric, topological, electrostatic, and thermodynamic molecular properties calculated for a representative set of potent mGluR1 agonists and antagonists. Global steric parameters and the total nonpolar area provide discrimination between the mGluR1 agonists and antagonists considered in the present work. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 2018,2027, 2001 [source] |