| |||
Candidate Receptor (candidate + receptor)
Selected AbstractsCorrelation between beta-lipoprotein levels and outcome of hepatitis C treatment,HEPATOLOGY, Issue 2 2006Kavitha Gopal The low-density lipoprotein receptor (LDLR) has been proposed as a candidate receptor for the hepatitis C virus (HCV). Competitive inhibition of HCV binding to the LDLR by low-density lipoprotein (LDL) has been shown in vitro. If similar inhibition occurs in vivo, an elevated serum concentration of beta- lipoproteins may reduce the efficiency of infecting hepatocytes with HCV by competitively inhibiting HCV viral receptor binding. We investigated the role of baseline lipid values in influencing the outcome of HCV treatment. We conducted a retrospective chart review of patients treated with an interferon-based regimen at our liver and gastroenterology clinics between 1998 and 2004. Of 99 patients enrolled in the study, 49 (49.5%) had HCV genotype 1 (LDL 100.2 ± 30.2 mg/dL [mean ± SD]), and 50 patients (50.5%) had genotype 2 or 3 (LDL 110.1 ± 40 mg/dL) infection. Early viral response (EVR), end-of-treatment response (ETR), and sustained viral response (SVR) were documented in 99, 88, and 77 patients, respectively. LDL and cholesterol levels prior to treatment were found to be higher in patients with positive EVR, ETR, and SVR. This difference remained significant independent of age. Multivariate analysis controlling for genotype and age showed that the higher the cholesterol and LDL levels prior to treatment, the greater the odds of responding to treatment. In conclusion, having higher serum LDL and cholesterol levels before treatment may be significant prognostic indicators for treatment outcome of those with chronic hepatitis C infection, particularly in genotypes 1 and 2. (HEPATOLOGY 2006;44:335,340.) [source] Discoidin domain receptor 2 mediates the collagen II-dependent release of interleukin-6 in primary human chondrocytes,THE JOURNAL OF PATHOLOGY, Issue 2 2009Andreas R Klatt Abstract We deciphered constituent parts of a signal transduction cascade that is initiated by collagen II and results in the release of various pro-inflammatory cytokines, including interleukin-6 (IL-6), in primary human chondrocytes. This cascade represents a feed-forward mechanism whereby cartilage matrix degradation is exacerbated by the mutually inducing effect of released collagen II fragments and pro-inflammatory cytokines. We previously proposed discoidin domain receptor 2 as a central mediator in this event. Since this cascade plays a prominent role in the pathogenesis of osteoarthritis, our study further investigates the hypothesis that discoidin domain receptor 2 is a candidate receptor for collagen II, and that transcription factor NF,B, lipid kinase PI3K, and the MAP kinases are constituent parts of this very signal transduction cascade. To accomplish this, we selectively knocked down the molecules of interest in primary human chondrocytes, induced the specified cascade by incubating primary human chondrocytes with collagen II, and observed the outcome, specifically the changes in interleukin-6 release. Knockdown was performed by siRNA-mediated gene silencing in the case of discoidin domain receptor 2 (DDR2) or by using specific inhibitors for the remainder of the molecules. Results indicated that discoidin domain receptor 2 mediates the collagen II-dependent release of interleukin-6 in primary human chondrocytes and that MAP kinases p38, JNK and ERK, as well as transcription factor NF,B, are integral components of intracellular collagen II signalling. Given the detrimental role of these molecules in osteoarthritis, our findings provide new targets for more specific therapeutics, which may have fewer side effects than those currently applied. Copyright © 2009 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. [source] Relevance of the C-terminal Arg-Phe sequence in ,2 -melanocyte-stimulating hormone (,2 -MSH) for inducing cardiovascular effects in conscious ratsBRITISH JOURNAL OF PHARMACOLOGY, Issue 7 2000M J M A Nijsen The cardiovascular effects by ,2 -melanocyte-stimulating hormone (,2 -MSH) are probably not due to any of the well-known melanocortin subtype receptors. We hypothesize that the receptor for Phe-Met-Arg-Phe-amide (FMRFa) or Phe-Leu-Phe-Gln-Pro-Gln-Arg-Phe-amide (neuropeptide FF; NPFFa), other Arg-Phe containing peptides, is the candidate receptor. Therefore, we studied various Arg-Phe containing peptides to compare their haemodynamic profile with that of ,2 -MSH(6,12), the most potent fragment of ,2 -MSH. Mean arterial pressure (MAP) and heart rate (HR) changes were measured in conscious rats after intravenous administration of ,2 -MSH related peptides. Phe-Arg-Trp-Asp-Arg-Phe-Gly (,2 -MSH(6,12)), FMRFa, NPFFa, Met-enkephalin-Arg-Phe-amide (MERFa), Arg-Phe-amide (RFa), acetyl-Phe-norLeu-Arg-Phe-amide (acFnLRFa) and desamino-Tyr-Phe-norLeu-Arg-Phe-amide (daYFnLRFa) caused a dose-dependent increase in MAP and HR. ,2 -MSH(6,12) showed the most potent cardiovascular effects (ED50=12 nmol kg,1 for ,MAP; 7 nmol kg,1 for ,HR), as compared to the other Arg-Phe containing peptides (ED50=177,292 nmol kg,1 for ,MAP; 130,260 nmol kg,1 for ,HR). Peptides, which lack the C-terminal Arg-Phe sequence (Lys-Tyr-Val-Met-Gly-His-Phe-Arg-Trp-Asp-Arg-Pro-Gly (,2 -pro11 -MSH), desamino-Tyr-Phe-norLeu-Arg-[L-1,2,3,4 tetrahydroisoquinoline-3-carboxylic acid]-amide (daYFnLR[TIC]a) and Met-enkephalin (ME)), were devoid of cardiovascular actions. The results indicate that the baroreceptor reflex-mediated reduction of tonic sympathetic activity due to pressor effects is inhibited by ,2 -MSH(6,12) and that its cardiovascular effects are dependent on the presence of a C-terminal Arg-Phe sequence. It is suggested that the FMRFa/NPFFa receptor is the likely candidate receptor, involved in these cardiovascular effects. British Journal of Pharmacology (2000) 131, 1468,1474; doi:10.1038/sj.bjp.0703709 [source] Identification of candidate secreted factors involved in trigeminal placode inductionDEVELOPMENTAL DYNAMICS, Issue 10 2007Kathryn L. McCabe Abstract Cranial ectodermal placodes are critical for normal development of the peripheral nervous system of the head. However, many aspects of the molecular and tissue interactions involved in their induction have yet to be elucidated. The trigeminal placode is induced by an unidentified secreted factor(s) from the dorsal neural tube. To determine candidates that may be involved in this induction process, we have performed reverse transcriptase-polymerase chain reaction (RT-PCR) and whole-mount in situ hybridization to screen for receptors expressed by uninduced presumptive trigeminal level ectoderm. We have found that receptors for fibroblast growth factors, insulin-like growth factors, platelet-derived growth factors, Sonic hedgehog, the transforming growth factor-beta superfamily, and Wnts all are expressed in patterns consistent with a role in trigeminal placode formation. This RT-PCR screen for candidate receptors expressed in presumptive trigeminal ectoderm is the first systematic screen to identify potential interactions underlying induction of the trigeminal placode and represents a critical step for understanding this complex process. Developmental Dynamics 236:2925,2935, 2007. © 2007 Wiley-Liss, Inc. [source] The Identification of an Adenovirus Receptor by Using Affinity Capture and Mass SpectrometryCHEMBIOCHEM, Issue 8 2004Sunia A. Trauger Dr. Abstract A tandem mass spectrometry-based approach is demonstrated for detecting a receptor for Ad37, one of the causative agents for epidemic keratoconjunctivitis. Partial purification of membrane glycoproteins was performed by using lectin-affinity chromatography and SDS-PAGE. Gel bands that were shown to bind Ad37 by using Viral Overlay Protein Blot Assay (VOPBA) were excised, proteolyzed and analyzed by using nanoLC-MS/MS to identify putative receptors contained in a mixture of proteins. Four candidate receptors were identified among approximately 50 proteins based on a search against a protein database. Inhibition of gene delivery mediated by an Ad37 vector, with antibodies against the glycoproteins identified by tandem mass spectrometry, strongly indicated that Membrane Cofactor Protein (MCP), a member of the complement regulatory family of proteins, is the receptor. This rapid and sensitive MS/MS-based strategy is perceived to have wide potential applications for the detection of viral receptors. [source] |