Cancer Cell Migration (cancer + cell_migration)

Distribution by Scientific Domains


Selected Abstracts


Synthesis of Novel Macrolactam and Macroketone Analogues of Migrastatin from D -Glucal and Comparison with Macrolactone and Acyclic Analogues: A Dorrigocin A Congener Is a Potent Inhibitor of Gastric Cancer Cell Migration

EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 11 2008
Guillaume Anquetin
Abstract Novel macrolactam and macroketone analogues of the migrastatin macrolide core have been synthesised from tri- O -acetyl- D -glucal in order to facilitate structure-activity studies. The Horner olefination, followed by ring-closing metathesis were key steps in the synthesis of the macroketone. The ability of the macroketone and macrolactam derivatives to inhibit the migration of gastric tumour cells as determined using a transwell migration assay were compared with macrolactone analogues and dorrigocin A analogues. One dorrigocin A congener was the most potent inhibitor of gastric cancer cell migration.(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008) [source]


Slamming the DOR on chemokine receptor signaling: Heterodimerization silences ligand-occupied CXCR4 and ,-opioid receptors

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 2 2008
Dale Hereld
Abstract Dimerization has emerged as a common mechanism for regulating the function of G protein-coupled receptors (GPCR). Among these are chemokine receptors, which detect various chemokines and regulate a range of physiological process, including immune cell trafficking, cancer cell migration, and neuronal patterning. Homo- and heterodimerization in response to chemokine binding has been shown to be required for the initiation or alteration of signaling by a number of chemokine receptors. In this issue of the European Journal of Immunology, a new study indicates that the formation of heterodimers of chemokine receptor CXCR4 and the ,-opioid receptor (DOR) prevents each of them from actively signaling, suggesting a novel mechanism for silencing GPCR function. See accompanying article: http://dx.doi.org/10.1002/eji200737630 [source]


Tumor-stromal crosstalk in invasion of oral squamous cell carcinoma: a pivotal role of CCL7

INTERNATIONAL JOURNAL OF CANCER, Issue 2 2010
Da-Woon Jung
Abstract Recent studies have shown that stromal fibroblasts have a more profound influence on the initiation and progression of carcinoma than was previously appreciated. This study aimed at investigating the reciprocal relationship between cancer cells and their associated fibroblasts at both the molecular and cellular level in oral squamous cell carcinoma (OSCC). To identify key molecular regulators expressed by carcinoma-associated fibroblasts (CAF) that promote cancer cell invasion, microarrays were performed by comparing cocultured OSCC cells and CAF with monoculture controls. Microarray and real-time PCR analysis identified marked upregulation of the chemokine (C-C motif) ligand 7 (CCL7) in cocultured CAF. ELISA showed an elevated level of CCL7 secretion from CAF stimulated by coculture with OSCC cells. CCL7 promoted the invasion and migration of OSCC cells, and the invasiveness was inhibited by treatment with CCL7 neutralizing antibody. OSCC cells were shown to express CCR1, CCR2 and CCR3, receptors for CCL7, by RT-PCR. In addition, treatment with anti-CCR1 or anti-CCR3 antibody inhibited CCL7-induced OSCC cell migration, implicating that CCL7 promotes cancer cell migration through CCR1 and CCR3 on OSCC cells. Cytokine antibody array analysis of the supernatant from OSCC cell culture revealed that interleukin-1, was an inducer of CCL7 secretion by CAF. This study confirms the reciprocal relationship of the molecular crosstalk regulating the invasion of OSCC and describes new potential targets for future therapy. [source]


Upregulation of myosin Va by Snail is involved in cancer cell migration and metastasis

INTERNATIONAL JOURNAL OF CANCER, Issue 1 2010
Linxiang Lan
Abstract Cell migration, which involves acto-myosin dynamics, cell adhesion, membrane trafficking and signal transduction, is a prerequisite for cancer cell metastasis. Here, we report that an actin-dependent molecular motor, unconventional myosin Va, is involved in this process and implicated in cancer metastasis. The mRNA expression of myosin Va is increased in a number of highly metastatic cancer cell lines and metastatic colorectal cancer tissues. Suppressing the expression of myosin Va by lentivirus-based RNA interference in highly metastatic cancer cells impeded their migration and metastasis capabilities both in vitro and in vivo. In addition, the levels of myosin Va in cancer cell lines are positively correlated with the expression of Snail, a transcriptional repressor that triggers epithelial,mesenchymal transition. Repression or overexpression of Snail in cancer cells caused reduced or elevated levels of myosin Va, respectively. Furthermore, Snail can bind to an E-box of the myosin Va promoter and induce its activity, which indicates that Snail might act as a transcriptional activator. These data demonstrate an essential role of myosin Va in cancer cell migration and metastasis, and suggest a novel target for Snail in its regulation of cancer progression. [source]


Matrix metalloproteinases in tumor invasion: Role for cell migration

PATHOLOGY INTERNATIONAL, Issue 4 2002
Kazuki Nabeshima
Matrix metalloproteinases (MMP) play a role in a wide range of tumorigenesis, including early carcinogenesis events, tumor growth and tumor invasion and metastasis. Given that the ability of tumor cells to infiltrate and disseminate widely is what makes the tumors malignant, a role of MMP in cell migration during this invasive and metastatic process is important. There are two types of cancer cell migration: single cell locomotion and cohort migration (cell movement en mass keeping cell,cell contact, which is frequently seen in better differentiated carcinomas). Cell surface localization and activation of MMP is essential for cells to migrate, through rearrangement of extracellular matrix (ECM) to suit cell migration. Certain MMP, such as gelatinases and membrane -type 1 MMP, have special mechanisms to localize at leading edges in both types of cell migration. Moreover, in cohort migration, expression of these MMP is regulated via cell,cell contact within migrating cell sheets and confined to the foremost pathfinder cells of the migrating cell sheets. New roles of cell surface MMP, such as cleavage of cell surface receptors or cofactors involved in cell,ECM interactions during cell migration, are also discussed. [source]


Expression of CCL5 (RANTES) and CCR5 in prostate cancer,

THE PROSTATE, Issue 2 2006
Gayle G. Vaday
Abstract Background Expression of the inflammatory chemokine CCL5 (RANTES) by tumor cells is thought to correlate with the progression of several cancers. CCL5 was shown to induce breast cancer cell migration, mediated by the receptor CCR5. A CCR5 antagonist was demonstrated to inhibit experimental breast tumor growth. Recently, CCL5 and CCR5 mRNA expression was reported in prostate cancer (PCa) tissues. Herein, we characterized CCL5 and CCR5 expression in cultures of PCa cells and explored possible functions of CCL5 in PCa progression. Methods Quantitative RT-PCR, ELISA, and immunohistochemical staining were performed to examine CCL5 expression in prostate cell lines. CCR5 expression was measured by flow cytometry. Proliferation and invasion assays were performed to determine potential functions of CCL5 and CCR5 in PCa. Results Expression of CCL5 mRNA and protein was found in human PCa cell lines (PC-3; DU-145; LNCaP) and primary prostate adenocarcinoma cells. CCL5 and CCR5 were also detected in human PCa tissues. CCR5 expression was demonstrated on the cell surface of PCa cells, as well as in intracellular pools. Incubation with CCL5 (10,100 ng/ml) induced PCa cell proliferation, and the CCR5 antagonist TAK-779 inhibited CCL5-induced proliferation. CCL5 was found to stimulate PCa cell invasion, and TAK-779 blocked the effects of CCL5. Conclusions In light of evidence that inflammation influences the pathogenesis of PCa, these results suggest that inflammatory chemokines, such as CCL5, expressed by prostate cells may act directly on the growth and survival of PCa cells. Chemokine receptor antagonists may thus block autocrine mechanisms of PCa progression. Published 2005 Wiley-Liss, Inc. [source]


Chemokine receptors in cancer metastasis and cancer cell-derived chemokines in host immune response

CANCER SCIENCE, Issue 11 2007
Keiichi Koizumi
The chemotactic cytokines called chemokines are a superfamily of small secreted cytokines that were initially characterized through their ability to prompt the migration of leukocytes. Attention has been focused on the chemokine receptors expressed on cancer cells because cancer cell migration and metastasis show similarities to leukocyte trafficking. CXC chemokine receptor 4 (CXCR4) was first investigated as a chemokine receptor that is associated with lung metastasis of breast cancers. Recently, CXCR4 was reported to be a key molecule in the formation of peritoneal carcinomatosis in gastric cancer. In the present review, we highlight current knowledge about the role of CXCR4 in cancer metastases. In contrast to chemokine receptors expressed on cancer cells, little is known about the roles of cancer cell-derived chemokines. Cancer tissue consists of both cancer cells and various stromal cells, and leukocytes that infiltrate into cancer are of particular importance in cancer progression. Although colorectal cancer invasion is regulated by the chemokine CCL9-induced infiltration of immature myeloid cells into cancer, high-level expression of cancer cell-derived chemokine CXCL16 increases infiltrating CD8+ and CD4+ T cells into cancer tissues, and correlates with a good prognosis. We discuss the conflicting biological effects of cancer cell-derived chemokines on cancer progression, using CCL9 and CXCL16 as examples. (Cancer Sci 2007; 98: 1652,1658) [source]