| |||
Cancer Cell Adhesion (cancer + cell_adhesion)
Selected AbstractsPaxillin modulates squamous cancer cell adhesion and is important in pressure-augmented adhesionJOURNAL OF CELLULAR BIOCHEMISTRY, Issue 6 2006William C. Conway Abstract Paxillin is an adapter protein regulating signaling and focal adhesion assembly that has been linked to malignant potential in many malignancies. Overexpression of paxillin has been noted in aggressive tumors. Integrin-mediated binding through the focal adhesion complex is important in metastatic adhesion and is upregulated by extracellular pressure in malignant colonocytes through FAK and Src activation. Neither head and neck cancers nor paxillin have been studied in this regard. We hypothesized that paxillin would play a role in modulating squamous cancer adhesion both at baseline and under conditions of increased extracellular pressure. Using SCC25 tongue squamous cancer cells stably transfected with either an empty selection vector or paxillin expression and selection vectors, we studied adhesion to collagen, paxillin, FAK, and Src expression and phosphorylation in cells maintained for 30 min under ambient or 15 mmHg increased pressure conditions. Paxillin-overexpressing cells exhibited adhesion 121,±,2.9% of that observed in vector-only cells (n,=,6, P,<,0.001) under ambient pressure. Paxillin-overexpression reduced FAK phosphorylation. Pressure stimulated adhesion to 118,±,2.3% (n,=,6, P,<,0.001) of baseline in vector-only cells, similar to its effect in the parental line, and induced paxillin, FAK, and Src phosphorylation. However, increased pressure did not stimulate adhesion or phosphorylate paxillin, FAK, or Src further in paxillin-overexpressing cells. Metastasizing squamous cancer cell adhesiveness may be increased by paxillin-overexpression or by paxillin activation by extracellular pressure during surgical manipulation or growth within a constraining compartment. Targeting paxillin in patients with malignancy and minimal tumor manipulation during surgical resection may be important therapeutic adjuncts. J. Cell. Biochem. © 2006 Wiley-Liss, Inc. [source] Colon cancer cell adhesion in response to Src kinase activation and actin-cytoskeleton by non-laminar shear stress,JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 2 2004Vijayalakshmi Thamilselvan Abstract Malignant cells shed from tumors during surgical resection or spontaneous metastasis experience physical forces such as shear stress and turbulence within the peritoneal cavity during irrigation, laparoscopic air insufflation, or surgical manipulation, and within the venous or lymphatic system. Since physical forces can activate intracellular signals that modulate the biology of various cell types in vitro, we hypothesized that shear stress and turbulence might increase colon cancer cell adhesion to extracellular matrix, potentiating metastatic implantation. Primary human malignant colon cancer cells isolated from resected tumors and SW620 were subjected to shear stress and turbulence by stirring cells in suspension at 600 rpm for 10 min. Shear stress for 10 min increased subsequent SW620 colon cancer cell adhesion by 40.0,±,3.0% (n,=,3; P,<,0.001) and primary cancer cells by 41.0,±,3.0% to collagen I when compared to control cells. In vitro kinase assay (1.5,±,0.13 fold) and Western analysis (1.34,±,0.04 fold) demonstrated a significant increase in Src kinase activity in cells exposed shear stress. Src kinase inhibitors PP1 (0.1 µM), PP2 (20 µM), and actin-cytoskeleton stabilizer phalloidin (10 µM) prevented the shear stress stimulated cell adhesion to collagen I. Furthermore, PP2 inhibited basal (50.0,±,2.8%) and prevented shear stress induced src activation but phalloidin pretreatment did not. These results raise the possibility that shear stress and turbulence may stimulate the adhesion of malignant cells shed from colon cancers by a mechanism that requires both actin-cytoskeletal reorganization an independent physical force activation of Src kinase. Blocking this pathway might reduce tumor metastasis during surgical resection. Published 2004 Wiley-Liss, Inc. [source] Bicalutamide inhibits androgen-mediated adhesion of prostate cancer cells exposed to ionizing radiationTHE PROSTATE, Issue 16 2008Tao Wang Abstract Background Cell adhesion plays an important role in proliferation, metastasis, and tumor growth and may represent a potential vulnerability in treatment of prostate cancer patients. Bicalutamide (Casodex) has been used as an anti-androgen agent for prostate cancer patients during hormone ablation therapy. This study focuses on the effect of Bicalutamide on cell adhesion to fibronectin (FN) in prostate cancer cells. Methods Androgen,dependent LNCaP prostate cancer cells were stimulated with androgen before being irradiated with doses of 0, 5, 10, or 15 Gy. Cell adhesion to fibronectin was then measured to ascertain androgen's role in integrin mediated prostate cancer cell adhesion. Flow cytometry was used to analyze surface expression of integrin subtypes in LNCaP cells. Results LNCaP cell adhesion to FN was significantly increased by stimulation with androgen when treated with 10 or 15 Gy ionizing radiations but not at 0 or 5 Gy. This increase was inhibited by treatment with Bicalutamide. LNCaP cells exposed to high dose radiation showed an increased expression of ,V and ,1 integrins in response to androgen treatment while Bicalutamide abolished this effect. Conclusions Our data show that Bicalutamide inhibits the effect of androgen on cell adhesion to FN through changes of integrin subtypes in cells given high dose radiation. This suggests new molecular targets and possible treatment strategies for prostate cancer patients to improve the outcome during hormone ablation therapy and radiation therapy. Prostate © 2008 Wiley-Liss, Inc. [source] Carbohydrate-mediated cell adhesion in cancer metastasis and angiogenesisCANCER SCIENCE, Issue 5 2004Reiji Kannagi Malignant transformation is associated with abnormal glycosylation, resulting in the synthesis and expression of altered carbohydrate determinants including sialyl Lewisa and sialyl Lewisx. The sialyl Lewisa and sialyl Lewisx determinants appear in the sera of patients with cancer, and are extensively utilized for serum diagnosis of cancers in Japan. Sialyl Lewisa and sialyl Lewisx are involved in selectin-mediated adhesion of cancer cells to vascular endothelium, and these determinants are thought to be closely associated with hematogenous metastasis of cancers. Recent progress in this area includes the following: 1. Substantial increases in solid clinical statistics that further confirm the contribution of these determinants in the progression of a wide variety of cancers; 2. Elucidation of the ligand specificity of the three family members of selectins and evaluation of the roles of these molecules in cancer cell adhesion; and 3. Advances in the study of the mechanism that leads to the enhanced expression of the sialyl Lewisa/x determinants in malignant cells. These recent results have confirmed that these determinants are not merely markers for cancers, but are functionally implicated in the malignant behavior of cancer cells. The results also suggested that the increase of these determinants in malignant cells is an inevitable consequence of the malignant transformation of cells. Considerable new knowledge has also been accumulated regarding the therapeutic implications for suppression of hematogenous metastasis targeting this cell adhesion system. [source] |