| |||
cAMP Pathway (camp + pathway)
Selected AbstractsCharacterization of the mouse adenylyl cyclase type VIII gene promoter: regulation by cAMP and CREBEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2002Jennifer R. Chao Abstract Adenylyl cyclase (AC) type VIII has been implicated in several forms of neural plasticity, including drug addiction and learning and memory. In the present study, we directly examined the role for the transcription factor CREB (cAMP response element binding protein) in regulating ACVIII expression by cloning a 5.2 kilobase region upstream of the translation start site of the mouse ACVIII gene. Analysis of this fragment revealed consensus elements for several transcription factors, including a canonical cAMP response element (CRE) in close proximity to the transcription initiation region. Next, ACVIII promoter activity was studied in two neural-derived cell lines and in primary cultures of rat striatal neurons. Activation of the cAMP pathway by forskolin treatment increased promoter activity, and a series of deletion and point mutants demonstrated that this activation is mediated specifically via the canonical CRE site. Gel shift assays confirmed that this site can bind CREB and several CREB family proteins. Further, activation of the ACVIII promoter by forskolin was potentiated by expression of a constitutively active form of CREB, CREB-VP16, whereas it was inhibited by expression of a dominant-negative form of CREB, A-CREB. Finally, over-expression of CREB in vivo, by viral-mediated gene transfer, induced ACVIII promoter activity in the brains of ACVIII-LacZ transgenic mice. These results suggest that the ACVIII gene is regulated by CREB in vitro and in vivo and that this regulation may contribute to CREB-dependent neural plasticity. [source] ,-MSH and cAMP signalling in normal human melanocytesEXPERIMENTAL DERMATOLOGY, Issue 9 2004R. Buscą Melanocytes are neural crest-derived skin cells specialized in the synthesis of melanin pigments responsible, in human, for skin and hair colour. The pro-opiomelanocortin peptide, ,-MSH is a strong melanogenic agent secreted by keratinocytes following UV radiation. ,-MSH through the binding to the MC1R and activation of the cyclic AMP pathway plays a pivotal role in melanocyte differentiation and in the regulation of skin pigmentation. During the last few years, we have elucidated the molecular events linking the cAMP pathway to melanogenesis upregulation. This cascade involves the activation of protein kinase A and CREB transcription factor, leading to the upregulation of the expression of microphthalmia-associated transcription factor (MITF). MITF binds and activates the melanogenic gene promoters thereby increasing their expression, which results in an increased melanin synthesis. Beyond this simplified scheme, other intracellular signalling pathways are regulated by cAMP and participate to the regulation of melanocyte differentiation. Indeed, cAMP inhibits the phosphatidyl inositol 3-kinase pathway, leading to the inhibition of AKT and to the activation of GSK3,. This kinase phosphorylates MITF and allows its binding to the target sequence. Such pathways are involved in the upregulation of melanogenesis. ,-MSH and cAMP signalling also regulate melanocyte dendricity, and melanosome transport through the inhibition of the Rho GTPase cascade that function downstream the PI3 kinase. It should be also mentioned that cAMP activates the ERK pathway through a melanocyte-specific pathway involving Ras and B-Raf. The activation of ERK and RSK1 leads to the phosphorylation of MITF and target MITF to the proteasome degradation pathway. Interestingly, several proteins involved in melanocyte differentiation by ,-MSH (MC1R, PI3K, B-Raf and MITF) have also been implicated in the development of melanoma, suggesting that the cAMP pathway could influence melanocyte transformation. [source] Enhancement of Ca2+ -regulated exocytosis by indomethacin in guinea-pig antral mucous cells: arachidonic acid accumulationEXPERIMENTAL PHYSIOLOGY, Issue 1 2006Shoko Fujiwara Ca2+ -regulated exocytosis is enhanced by an autocrine mechanism via the PGE2,cAMP pathway in antral mucous cells of guinea-pigs. The inhibition of the PGE2,cAMP pathway by H-89 (an inhibitor of protein kinase A, PKA) or aspirin (ASA, an inhibitor of cyclo-oxygenase, COX) decreased the frequency of ACh-stimulated exocytotic events by 60%. Indomethacin (IDM, an inhibitor of COX), however, decreased the frequency of ACh-stimulated exocytotic events only by 30%. Moreover, IDM increased the frequency of ACh-stimulated exocytotic events by 50% in H-89-treated or ASA-treated cells. IDM inhibits the synthesis of Prostaglandin (PGG/H) and (15R)-15-hydroxy-5,8,11 cis-13-trans-eicosatetraenoic acid (15R-HPETE), while ASA inhibits only the synthesis of PGG/H. Thus, IDM may accumulate arachidonic acid (AA). AACOCF3 or N -(p -amylcinnamoyl) anthranilic acid (ACA; both inhibitors of phospholipase A2, PLA2), which inhibits AA synthesis, decreased the frequency of ACh-stimulated exocytotic events by 60%. IDM, however, did not increase the frequency in AACOCF3 -treated cells. AA increased the frequency of ACh-stimulated exocytotic events in AACOCF3 - or ASA-treated cells, similar to IDM in ASA- and H-89-treated cells. Moreover, in the presence of AA, IDM did not increase the frequency of ACh-stimulated exocytotic events in ASA-treated cells. The PGE2 release from antral mucosa indicates that inhibition of PLA2 by ACA inhibits the AA accumulation in unstimulated and ACh-stimulated antral mucosa. The dose,response study of AA and IDM demonstrated that the concentration of intracellular AA accumulated by IDM is less than 100 nm. In conclusion, IDM modulates the ACh-stimulated exocytosis via AA accumulation in antral mucous cells. [source] The Secretory Response of the Rat Colon to the Flavonol Quercetin is Dependent on Ca2+ -CalmodulinEXPERIMENTAL PHYSIOLOGY, Issue 3 2000R. Cermak The dietary flavonol quercetin induces chloride secretion in rat intestine. To clarify the underlying mechanisms, experiments were performed in Ussing chambers with tissue from rat proximal and distal colon. Quercetin induced an increase in short-circuit current (Isc), which was largely independent of submucosal neurons, as it was not affected by the neurotoxin tetrodotoxin. The effect of quercetin was blocked by the calmodulin antagonists trifluoperazine and ophiobolin A and was diminished by a blocker of Ca2+ release from intracellular stores (TMB-8), whereas the muscarinic receptor antagonist atropine was ineffective. The quercetin-induced Isc was abolished in Ca2+ -free solution. The flavonol was able to further increase Isc after maximal stimulation of the cAMP pathway by forskolin. The Isc increase by the flavonol was differently affected by two analogous phosphodiesterase inhibitors. Whereas 3-isobutyl-1-methylxanthine (IBMX) antagonized the effect of quercetin, 8-methoxymethyl-IBMX had no effect. Both phosphodiesterase inhibitors similarly influenced the Isc increase induced by forskolin. These results indicate that the chloride secretion induced by quercetin in rat colon depends on Ca2+ and calmodulin. The cAMP pathway and inhibition of phosphodiesterase appear not to be responsible for the secretory activity of the flavonol. [source] Markedly attenuated acute and chronic pain responses in mice lacking adenylyl cyclase-5GENES, BRAIN AND BEHAVIOR, Issue 2 2007K.-S. Kim Chronic inflammatory and neuropathic pain is often difficult to manage using conventional remedies. The underlying mechanisms and therapeutic strategies required for the management of chronic pain need to be urgently established. The cyclic AMP (cAMP) second messenger system has been implicated in the mechanism of nociception, and the inhibition of the cAMP pathway by blocking the activities of adenylyl cyclase (AC) and protein kinase A has been found to prevent chronic pain in animal models. However, little is known regarding which of the 10 known isoforms of AC are involved in nociceptive pathways. Therefore, we investigated the potential pronociceptive function of AC5 in nociception using recently developed AC5 knockout mice (AC5,/,). We found that AC5,/, mice show markedly attenuated pain-like responses in acute thermal and mechanical pain tests as compared with the wildtype control. Also, AC5,/, mice display hypoalgesic responses to inflammatory pain induced by subcutaneous formalin injection into hindpaws, and to non-inflammatory and inflammatory visceral pain induced by injecting magnesium sulfate or acetic acid into the abdomen. Moreover, AC5,/, mice show strongly suppressed mechanical and thermal allodynia in two nerve injury-induced neuropathic pain models. These results suggest that AC5 is essential for acute and chronic pain, and that AC5 knockout mice provide a useful model for the evaluation of the pathophysiological mechanisms of pain. [source] Prostaglandin E2 induces vascular endothelial growth factor secretion in prostate cancer cells through EP2 receptor-mediated cAMP pathwayMOLECULAR CARCINOGENESIS, Issue 11 2007Xingya Wang Abstract Prostaglandin E2 (PGE2) has been shown to induce expression of vascular endothelial growth factor (VEGF) and other signaling molecules in several cancers. PGE2 elicits its functions though four G-protein coupled membrane receptors (EP1,4). In this study, we investigated the role of EP receptors in PGE2 -induced molecular events in prostate cancer cells. qRT-PCR analysis revealed that PC-3 cells express a substantially higher level of EP2 and moderately higher EP4 than DU145 and LNCaP cells. LNCaP cells had virtually no detectable EP2 mRNA. EP1 and EP3 mRNAs were not detected in these cells. Treatment of prostate cancer cells with PGE2 (1 nM,10 µM) increased both VEGF secretion and cyclic adenosine monophosphate (cAMP) production. Levels of induction in PC-3 cells were greater than in DU145 and LNCaP cells. The selective EP2 agonist CAY10399 also significantly increased VEGF secretion and cAMP production in PC-3 cells, but not in DU145 and LNCaP cells. Moreover, PGE2 and CAY10399 increased mitogen activated protein kinase/extracellular signal regulated kinase (MAPK/Erk) and Akt phosphorylation in PC-3 and DU145 cells, but not in LNCaP cells. However, neither the MAPK/Erk inhibitor U0126 nor the PI3K/Akt inhibitor LY294002 abolished PGE2 -induced VEGF secretion in PC-3 cells. We further demonstrated that the adenylate cyclase activator forskolin and the cAMP anologue 8-bromo-cAMP mimicked the effects of PGE2 on VEGF secretion in PC-3 cells. Meanwhile, the adenylate cyclase inhibitor 2,5,-dideoxyadenosine, at concentrations that inhibited PGE2 -induced cAMP, significantly blocked PGE2 -induced VEGF secretion in PC-3 cells. We conclude that PGE2 -induced VEGF secretion in prostate cancer cells is mediated through EP2-, and possibly EP4-, dependent cAMP signaling pathways. © 2007 Wiley-Liss, Inc. [source] Prostaglandin D2 production in FM55 melanoma cells is regulated by ,-melanocyte-stimulating hormone and is not related to melanin productionEXPERIMENTAL DERMATOLOGY, Issue 8 2010Mojgan Masoodi Please cite this paper as: Prostaglandin D2 production in FM55 melanoma cells is regulated by ,-melanocyte-stimulating hormone and is not related to melanin production. Experimental Dermatology 2010; 19: 751,753. Abstract:, This study shows that prostaglandins in human FM55 melanoma cells and epidermal melanocytes are produced by COX-1. Prostaglandin production in FM55 melanoma cells was unrelated to that of melanin suggesting that the two processes can occur independently. ,-Melanocyte-stimulating hormone, which had no effect on melanin production in FM55 cells, stimulated PGD2 production in these cells without affecting PGE2. While cAMP pathways may be involved in regulating PGD2 production, our results suggest that ,-MSH acts independently of cAMP, possibly by regulating the activity of lipocalin-type PGD synthase. This ,-MSH-mediated effect may be associated with its role as an immune modulator. [source] NDRG2 gene expression in B16F10 melanoma cells restrains melanogenesis via inhibition of Mitf expressionPIGMENT CELL & MELANOMA RESEARCH, Issue 6 2008Aeyung Kim Summary NDRG2 (N-myc downstream-regulated gene 2) is a candidate tumor suppressor implicated in control of glioblastoma proliferation and dendritic cell differentiation. The microphthalmia-associated transcription factor (Mitf) plays a crucial role in the melanocyte lineage and in melanoma by controlling survival, differentiation, cell cycle entry and exit, and melanoma metastasis. Identifying upstream regulators of Mitf expression, therefore, remains a key issue. In this study, we aimed to assess whether the candidate tumor suppressor NDRG2 can modulate Mitf expression. Here, we show that NDRG2 acts to prevent cAMP and ,-catenin-mediated activation of the Mitf promoter, thereby blocking melanogenesis via the downstream Mitf target genes Tyrosinase, Tyrp1 and Dct. The data suggest that NDRG2 impairs melanogenesis by interfering with both the TCF/,-catenin and cAMP/CREB pathways that are known to stimulate Mitf expression in melanocytes and have major implications for the role of NDRG2 in pigmentation and melanoma progression. Taken together, the results not only identify NDRG2 as a novel regulator of pigmentation, but also potentially a key factor in regulating melanoma progression via Mitf. [source] Metaplasticity of the late-phase of long-term potentiation: a critical role for protein kinase A in synaptic taggingEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2006Jennie Z. Young Abstract The late-phase of long-term potentiation (L-LTP) in hippocampal area CA1 requires gene expression and de novo protein synthesis but it is expressed in an input-specific manner. The ,synaptic tag' theory proposes that gene products can only be captured and utilized at synapses that have been ,tagged' by previous activity. The mechanisms underlying synaptic tagging, and its activity dependence, are largely undefined. Previously, we reported that low-frequency stimulation (LFS) decreases the stability of L-LTP in a cell-wide manner by impairing synaptic tagging. We show here that a phosphatase inhibitor, okadaic acid, blocked homosynaptic and heterosynaptic inhibition of L-LTP by prior LFS. In addition, prior LFS homosynaptically and heterosynaptically impaired chemically induced synaptic facilitation elicited by forskolin/3-isobutyl-1-methylxanthine, suggesting that there is a cell-wide dampening of cAMP/protein kinase A (PKA) signaling concurrent with phosphatase activation. We propose that prior LFS impairs expression of L-LTP by inhibiting synaptic tagging through its actions on the cAMP/PKA pathway. In support of this notion, we show that hippocampal slices from transgenic mice that have genetically reduced hippocampal PKA activity display impaired synaptic capture of L-LTP. An inhibitor of PKA, KT-5720, also blocked synaptic capture of L-LTP. Moreover, pharmacological activation of the cAMP/PKA pathway can produce a synaptic tag to capture L-LTP expression, resulting in persistent synaptic facilitation. Collectively, our results show that PKA is critical for synaptic tagging and for input-specific L-LTP. PKA-mediated signaling can be constrained by prior episodes of synaptic activity to regulate subsequent L-LTP expression and perhaps control the integration of multiple synaptic events over time. [source] Tetomilast suppressed production of proinflammatory cytokines from human monocytes and ameliorated chronic colitis in IL-10-deficient miceINFLAMMATORY BOWEL DISEASES, Issue 11 2008Hitoshi Ichikawa MD Abstract Background: Tetomilast (OPC-6535) was originally developed as a compound inhibiting superoxide production in neutrophils. Although its mechanism of action is not completely understood, phosphodiesterase type 4 inhibitory function has been postulated. The therapeutic effect of PDE4 inhibitors has been reported for chronic inflammatory disorders such as chronic obstructive pulmonary diseases. In this study we aimed to examine whether tetomilast could be a novel drug for inflammatory bowel diseases by further clarifying its antiinflammatory effects. Methods: Cytokines from human peripheral blood mononuclear cells were measured by enzyme-linked immunosorbent assay (ELISA) and Cytokine Beads Array. The transcripts were quantified by reverse-transcriptase polymerase chain reaction (RT-PCR). Phosphorylation of transcription factors was examined by phosflow. To examine its in vivo effect, a once-daily oral dose of tetomilast was tested in murine IL-10,/, chronic colitis. Results: Tetomilast suppressed TNF-, and IL-12 but not IL-10 production from lipopolysaccharide (LPS)-stimulated human monocytes. It suppressed TNF-,, IFN-,, and IL-10 from CD4 lymphocytes. Tetomilast suppressed cytokine production at the transcriptional level but did not alter phosphorylation of p65, ERK, p38, and STAT3. HT-89, a protein kinase A inhibitor, did not abolish the effect of tetomilast, suggesting that it was independent from the classical cAMP/PKA pathway. IL-10 was not essential to the inhibitory effect of tetomilast on TNF-, and IL-12. Tetomilast ameliorated IL-10,/, chronic colitis with reduced clinical symptoms, serum amyloid A, and histological scores with decreased TNF-, mRNA expression. Conclusions: Tetomilast exerts its antiinflammatory effects on human monocytes and CD4 cells. Combined with in vivo data these findings support the feasibility of tetomilast as a novel drug for inflammatory bowel diseases. (Inflamm Bowel Dis 2008) [source] Inhibition of interleukin-1,,induced matrix metalloproteinases 1 and 13 production in human osteoarthritic chondrocytes by prostaglandin D2ARTHRITIS & RHEUMATISM, Issue 11 2008Nadia Zayed Objective To investigate the effects of prostaglandin D2 (PGD2) on interleukin-1, (IL-1,),induced matrix metalloproteinase 1 (MMP-1) and MMP-13 expression in human chondrocytes and the signaling pathways involved in these effects. Methods Chondrocytes were stimulated with IL-1 in the presence or absence of PGD2, and expression of MMP-1 and MMP-13 proteins was evaluated by enzyme-linked immunosorbent assay. Messenger RNA (mRNA) expression and promoter activity were analyzed by real-time reverse transcription,polymerase chain reaction and transient transfections, respectively. The role of the PGD2 receptors D prostanoid receptor 1 (DP1) and chemoattractant receptor,like molecule expressed on Th2 cells (CRTH2) was evaluated using specific agonists and antibody-blocking experiments. The contribution of the cAMP/protein kinase A (PKA) pathway was determined using cAMP-elevating agents and PKA inhibitors. Results PGD2 decreased in a dose-dependent manner IL-1,induced MMP-1 and MMP-13 protein and mRNA expression as well as their promoter activation. DP1 and CRTH2 were expressed and functional in chondrocytes. The effect of PGD2 was mimicked by BW245C, a selective agonist of DP1, but not by 13,14-dihydro-15-keto-PGD2, a selective agonist of CRTH2. Furthermore, treatment with an anti-DP1 antibody reversed the effect of PGD2, indicating that the inhibitory effect of PGD2 is mediated by DP1. The cAMP-elevating agents 8-Br-cAMP and forskolin suppressed IL-1,induced MMP-1 and MMP-13 expression, and the PKA inhibitors KT5720 and H89 reversed the inhibitory effect of PGD2, suggesting that the effect of PGD2 is mediated by the cAMP/PKA pathway. Conclusion PGD2 inhibits IL-1,induced production of MMP-1 and MMP-13 by chondrocytes through the DP1/cAMP/PKA signaling pathway. These data also suggest that modulation of PGD2 levels in the joint may have therapeutic potential in the prevention of cartilage degradation. [source] Tyrosine phosphorylation of a 38-kDa capacitation-associated buffalo (Bubalus bubalis) sperm protein is induced by L -arginine and regulated through a cAMP/PKA-independent pathwayINTERNATIONAL JOURNAL OF ANDROLOGY, Issue 1 2008S. C. Roy Summary The aim of the present study was to determine the effect of l -arginine on nitric oxide (NO,) synthesis, capacitation and protein tyrosine phosphorylation in buffalo spermatozoa. Ejaculated buffalo spermatozoa were capacitated in the absence or presence of heparin, or l -arginine or N, -nitro- l -arginine methyl ester (l -NAME), an inhibitor of nitric oxide synthase (NOS) for 6 h. Capacitating spermatozoa generated NO, both spontaneously and following stimulation with l -arginine and l -NAME quenched such l -arginine-induced NO, production. Immunolocalization of NOS suggested for existence of constitutive NOS in buffalo spermatozoa. l -Arginine (10 mm) was found to be a potent capacitating agent and addition of l -NAME to the incubation media attenuated both l -arginine and heparin-induced capacitation and suggested that NO, is involved in the capacitation of buffalo spermatozoa. Two sperm proteins of Mr 38 000 (p38) and 20 000 (p20) were tyrosine phosphorylated extensively by both heparin and l -arginine. Of these, the tyrosine phosphorylation of p38 was insensitive to both induction by cAMP agonists as well as inhibition by a protein kinase A (PKA) inhibitor. Further, most of these l -arginine-induced tyrosine phosphorylated proteins were localized to the midpiece and principal piece regions of flagellum of capacitated spermatozoa and suggested that sperm flagellum takes active part during capacitation. These results indicated that l -arginine induces capacitation of buffalo spermatozoa through NO, synthesis and tyrosine phosphorylation of specific sperm proteins involving a pathway independent of cAMP/PKA. [source] |