| |||
Calvin Cycle (calvin + cycle)
Selected AbstractsInfection of Arabidopsis thaliana leaves with Albugo candida (white blister rust) causes a reprogramming of host metabolismMOLECULAR PLANT PATHOLOGY, Issue 2 2000Hsueh-Mei Chou Albugo candida (Pers.) (O.) Kunze is a biotrophic pathogen which infects the crucifer Arabidopsis thaliana (L.) Heynh forming discrete areas of infection. Eight days after inoculation of leaves, white blisters became visible on the under surface of the leaf although no symptoms were apparent on the upper surface. By day 14, the region of leaf invaded by fungal mycelium had become chlorotic. Recently it has been hypothesized that an accumulation of soluble carbohydrates, following an increase in invertase activity, may trigger sugar signal transduction pathways leading to the repression of photosynthetic gene expression and to the induction of defence proteins. This hypothesis was investigated by quantifying localized changes in carbohydrate and photosynthetic metabolism and the expression of genes encoding photosynthetic and defence proteins. Quantitative imaging of chlorophyll fluorescence revealed that the rate of photosynthesis declined progressively in the invaded regions of the leaf. However, in uninfected regions of the infected leaf the rate of photosynthesis was similar to that measured in the control leaf until late on during the infection cycle when it declined. Images of nonphotochemical fluorescence quenching (NPQ) suggested that the capacity of the Calvin cycle had been reduced in infected regions and that there was a complex metabolic heterogeneity within the infected leaf. A. candida also caused localized changes in the carbohydrate metabolism of the leaf; soluble carbohydrates accumulated in the infected region whereas the amount of starch declined. The reverse was seen in uninfected regions of the infected leaf; carbohydrates did not accumulate until late on during infection and the amount of starch increased as the infection progressed. There was an increase in the activity of invertases which was confined to regions of the leaf invaded by the fungal mycelium. The increase in apoplastic invertase activity was of host origin, as mRNA levels of the AT,FRUCT1 gene (measured by semiquantitative RT-PCR) increased 40-fold in the infected region. The increase in soluble invertase activity resulted from the appearance of a new isoform in the invaded region of the leaf. Current evidence suggests that this was of fungal origin. Northern blot analysis of cab and rbcS showed that photosynthetic gene expression was repressed in the infected leaf from 6 days after inoculation (DAI) when compared to control leaves. In contrast, there was no detectable induction of defence proteins in the infected leaf. These data are discussed in the context of the sugar-sensing hypothesis presented above. [source] Interactions between the effects of atmospheric CO2 content and P nutrition on photosynthesis in white lupin (Lupinus albus L.)PLANT CELL & ENVIRONMENT, Issue 5 2006CATHERINE D. CAMPBELL ABSTRACT Phosphorus (P) is a major factor limiting the response of carbon acquisition of plants and ecosystems to increasing atmospheric CO2 content. An important consideration, however, is the effect of P deficiency at the low atmospheric CO2 content common in recent geological history, because plants adapted to these conditions may also be limited in their ability to respond to further increases in CO2 content. To ascertain the effects of low P on various components of photosynthesis, white lupin (Lupinus albus L.) was grown hydroponically at 200, 400 and 750 µmol mol,1 CO2, under sufficient and deficient P supply (250 and 0.69 µm P, respectively). Increasing growth CO2 content increased photosynthesis only under sufficient growth P. Ribulose 1,5-biphosphate carboxylase/oxygenase (Rubisco) content and activation state were not reduced to the same degree as the net CO2 assimilation rate (A), and the in vivo rate of electron transport was sufficient to support photosynthesis in all cases. The rate of triose phosphate use did not appear limiting either, because all the treatments continued to respond positively to a drop in oxygen levels. We conclude that, at ambient and elevated CO2 content, photosynthesis in low-P plants appears limited by the rate of ribulose biphosphate (RuBP) regeneration, probably through inhibition of the Calvin cycle. This failure of P-deficient plants to respond to rising CO2 content above 200 µmol mol,1 indicates that P status already imposes a widespread restriction in plant responses to increases in CO2 content from the pre-industrial level to current values. [source] Inhibition of photosynthesis and modification of the wheat leaf proteome by Ptr ToxB: A host-specific toxin from the fungal pathogen Pyrenophora tritici-repentisPROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 16 2010Yong Min Kim Abstract Tan spot, caused by Pyrenophora tritici-repentis, is an important foliar disease of wheat. The fungus produces the host-specific, chlorosis-inducing toxin Ptr ToxB. To better understand toxin action, we examined the effects of Ptr ToxB on sensitive wheat. Photosynthesis, as measured by infrared gas analysis, declined significantly within 12,h of toxin treatment, prior to the development of chlorosis at 48,72,h. Analysis by 2-DE revealed a total of 102 protein spots with significantly altered intensities 12,36,h after toxin treatment, of which 66 were more abundant and 36 were less abundant than in the buffer-treated control. The identities of 47 of these spots were established by MS/MS, and included proteins involved in the light reactions of photosynthesis, the Calvin cycle, and the stress/defense response. Based on the declines in photosynthesis and the identities of the differentially abundant proteins, we hypothesize that Ptr ToxB causes a rapid disruption in the photosynthetic processes of sensitive wheat, leading to the generation of ROS and oxidative stress. Although the photoprotective and repair mechanisms of the host appear to initially still be functional, they are probably overwhelmed by the continued production of ROS, leading to chlorophyll photooxidation and the development of chlorosis. [source] The rate of transport through a phosphate translocator affects delayed luminescence induction: an experiment and a theoretical modelANNALS OF APPLIED BIOLOGY, Issue 1 2001S KHUZNETSOVA Summary Delayed luminescence (DL) induction curves were studied in leaves from a mutant pea line containing mutations at both the r and rb loci, compared with leaves from wild type plants. Genes at the r and rb loci encode starch branching enzyme and ADP - glucose pyrophosphorylase, respectively. The presence of mutations at both loci, previously known to reduce the starch content in the dry mature seed by 75%, have been shown to lower the starch level in leaves by at least 20%. During induction, the half-time for the DL intensity decrease from maximum to steady state in the mutant was 1.5 ± 0.2 times longer than for the wild type. It is proposed that the prolongation of the induction period in leaves from the mutant plants is caused by a lack of inorganic phosphate (Pi) restricting the rate of ATP synthesis at the beginning of induction. The reduced Pi would be compensated by triose flow from the chloroplast, via the triose phosphate translocator, being exchanged for Pi from the cytosol. Analysis of our theoretical photosynthesis model confirmed that a decrease in the rate of Pi released from the Calvin cycle could lead to a prolongation of the induction period. [source] New roads lead to Rubisco in archaebacteriaBIOESSAYS, Issue 8 2007Oliver Mueller-Cajar The discovery of the CO2 -fixing enzyme Rubisco in the Archaebacteria has presented a conundrum in that they apparently lack the gene for phosphoribulokinase, which is required to generate Rubisco's substrate ribulose 1,5-bisphosphate (RuBP). However, two groups1, 2 have now demonstrated novel RuBP synthesis pathways, demystifying Rubisco's non-autotrophic and perhaps ancient role. A new CO2 fixing role for Rubisco, which is distinct from the globally dominant Calvin cycle, is providing important clues furthering our understanding of the evolution of autotrophy. This perspective is strengthened by the additional recognition in this commentary that some Rubisco-containing Archaea do also contain PRK and may represent an interesting autotrophic evolutionary transition. Supplementary material for this article can be found on the BioEssays website (http://www.interscience.wiley.com/jpages/0265-9247/suppmat/index.html). BioEssays 29:722,724, 2007. © 2007 Wiley Periodicals, Inc. [source] |