| |||
Calibration Parameters (calibration + parameter)
Selected AbstractsA perspective factorization method for Euclidean reconstruction with uncalibrated camerasCOMPUTER ANIMATION AND VIRTUAL WORLDS (PREV: JNL OF VISUALISATION & COMPUTER ANIMATION), Issue 4 2002Mei Han Abstract Structure from motion (SFM), which is recovering camera motion and scene structure from image sequences, has various applications, such as scene modelling, robot navigation, object recognition and virtual reality. Most of previous research on SFM requires the use of intrinsically calibrated cameras. In this paper we describe a factorization-based method to recover Euclidean structure from multiple perspective views with uncalibrated cameras. The method first performs a projective reconstruction using a bilinear factorization algorithm, and then converts the projective solution to a Euclidean one by enforcing metric constraints. The process of updating a projective solution to a full metric one is referred as normalization in most factorization-based SFM methods. We present three normalization algorithms which enforce Euclidean constraints on camera calibration parameters to recover the scene structure and the camera calibration simultaneously, assuming zero skew cameras. The first two algorithms are linear, one for dealing with the case that only the focal lengths are unknown, and another for the case that the focal lengths and the constant principal point are unknown. The third algorithm is bilinear, dealing with the case that the focal lengths, the principal points and the aspect ratios are all unknown. The results of experiments are presented. Copyright © 2002 John Wiley & Sons, Ltd. [source] Enantioselective analysis of pheniramine in urine by charged CD-mediated CZE provided with a fiber-based DAD and an on-line sample pretreatment by capillary ITPELECTROPHORESIS, Issue 15 2007Jozef Marák Abstract Application potentialities of CZE on-line coupled with capillary ITP and DAD to the identification and determination of trace concentration levels (,g/L) of pheniramine (PHM) enantiomers and their metabolites present in complex ionic matrices of biological origin (urine) are shown. An enhanced (enantio)selectivity of the CZE separation system obtained by the addition of carboxyethyl-,-CD (CE-,-CD) to the carrier electrolyte provided CZE conditions for a reliable identification of similar/identical DAD spectra of structurally related compounds (PHM enantiomers and their metabolites) in clinical urine samples differing in qualitative and quantitative composition of sample matrix constituents. A high sample loadability (a 30,,L sample injection volume), partial sample clean-up (removing macroconstituents from the sample), and preconcentration of the analytes in ITP stage resulted in the decrease of concentration LOD for PHM enantiomers in urine to 5.2 and 6.8,,g/L (2.2×10,8 and 2.8×10,8,mol/L), without using any sample pretreatment technique. The background correction and smoothing procedure applied to the raw DAD spectra provided analytically relevant DAD spectra of PHM enantiomers and their metabolites also when they were present in urine sample (30,,L injection volumes of ten-times diluted urine sample) at a 9×10,8,mol/L concentration. DAD spectra of PHM enantiomers present in urine samples matched their reference spectra with reasonable certainties. DAD spectra of PHM metabolites were compared with the reference spectra of PHM enantiomers and a good match was found which indicates the similarities in the structures of enantiomers and their metabolites detected in the urine samples. This fact allows performing the quantitative analyses of PHM metabolites in the urine samples by applying the calibration parameters of PHM enantiomers also for PHM metabolites and the results show the possibilities of using the ITP,CZE,DAD combination for the direct analysis of PHM enantiomers and/or their metabolites in urine without any sample pretreatment. ITP,CZE,DAD method with oppositely charged selector is suggested to use in clinical research as it provides favorable performance parameters including sensitivity, linearity, precision, recovery, and robustness with minimal demands on sample preparation. [source] Transient Leakance and Infiltration Characteristics during Lake Bank FiltrationGROUND WATER, Issue 1 2009B. Wiese Infiltration capacity of bank filtration systems depends on water extraction and hydraulic resistance of the bed sediments. Lakebed hydraulics may be especially affected by clogging, which is dependent on settlement of fine particles, redox potential, and other factors. In the field, most of these processes are difficult to quantify, and thus, when calculating response to pumping the water flux across the sediment surface is assumed to be linearly dependent on the hydraulic gradient. However, this assumption was not adequate to describe conditions at a bank filtration site located at Lake Tegel, Berlin, Germany. Hence, we first assumed the leakage coefficient (or leakance) is spatially distributed and also temporally variant. Furthermore, observations show that the leakance is considerably higher in shallow than in deeper areas; hence, leakance was assumed to be dependent on the existence and thickness of an unsaturated zone below the lake. The proposed explanation of spatial and temporal variability in leakance involves a hypothesis for redox dependent and reversible biogeochemical clogging, supported by geochemical observations in surface water and ground water. Four leakance approaches are implemented in the ground water flow code MODFLOW2000 and calibrated by inverse modeling using the parameter estimation software PEST. These concepts are evaluated by examining the fit to the hydraulic heads, to infiltration measurements, transport modeling results, and considering the degrees of freedom due to the number of calibration parameters. The leakage concept based on the assumption of the influence of an unsaturated zone on clogging processes best explains the field data. [source] A Model of Cells as Practical Approach to Simulate Spring Flow in the Itxina Karstic Aquifer, Basque Country, SpainGROUND WATER, Issue 3 2001J. Gárfias Soliz The aim of this study is to apply a parsimonious hydrologic model to the Itxina karstic aquifer that can predict changes in discharge resulting from variable inputs (recharge). The Itxina Aquifer was divided into four cells corresponding to different recharge areas. Each cell was treated as a tank to characterize the conditions within the cell. In the model, when the reservoir boundaries coincide with the position of the siphons, the signal simulated is sensitive to input pulses of the recharge. This supports the hypothesis that the siphons are the controlling mechanism in the flow system of the aquifer. The good agreement between predicted and measured discharges demonstrates the ability of the model to simulate the flow in the Itxina Aquifer. These results demonstrated that the hydraulic conductivity increases downstream within the aquifer. The hydraulic conductivities obtained by calibration varied between 4.2 × 10,3 m/s upstream of the aquifer, 6.0 × 10,2 m/s in the central region, and 9.5 × 10,1 m/s in the lower region of the aquifer. These values seem reasonable because the underground features in the principal caves show that the density of caves increases downstream in the Itxina Aquifer. The simple representation of the system produced results comparable to traditional ground water models with fewer data requirements and calibration parameters. [source] Parameter estimation in semi-distributed hydrological catchment modelling using a multi-criteria objective functionHYDROLOGICAL PROCESSES, Issue 22 2007Hamed Rouhani Abstract Output generated by hydrologic simulation models is traditionally calibrated and validated using split-samples of observed time series of total water flow, measured at the drainage outlet of the river basin. Although this approach might yield an optimal set of model parameters, capable of reproducing the total flow, it has been observed that the flow components making up the total flow are often poorly reproduced. Previous research suggests that notwithstanding the underlying physical processes are often poorly mimicked through calibration of a set of parameters hydrologic models most of the time acceptably estimates the total flow. The objective of this study was to calibrate and validate a computer-based hydrologic model with respect to the total and slow flow. The quick flow component used in this study was taken as the difference between the total and slow flow. Model calibrations were pursued on the basis of comparing the simulated output with the observed total and slow flow using qualitative (graphical) assessments and quantitative (statistical) indicators. The study was conducted using the Soil and Water Assessment Tool (SWAT) model and a 10-year historical record (1986,1995) of the daily flow components of the Grote Nete River basin (Belgium). The data of the period 1986,1989 were used for model calibration and data of the period 1990,1995 for model validation. The predicted daily average total flow matched the observed values with a Nash,Sutcliff coefficient of 0·67 during calibration and 0·66 during validation. The Nash,Sutcliff coefficient for slow flow was 0·72 during calibration and 0·61 during validation. Analysis of high and low flows indicated that the model is unbiased. A sensitivity analysis revealed that for the modelling of the daily total flow, accurate estimation of all 10 calibration parameters in the SWAT model is justified, while for the slow flow processes only 4 out of the set of 10 parameters were identified as most sensitive. Copyright © 2007 John Wiley & Sons, Ltd. [source] Daily streamflow modelling and assessment based on the curve-number techniqueHYDROLOGICAL PROCESSES, Issue 16 2002Jin-Yong Choi Abstract A cell-based long-term hydrological model (CELTHYM) that can be integrated with a geographical information system (GIS) was developed to predict continuous stream flow from small agricultural watersheds. The CELTHYM uses a cell-by-cell soil moisture balance approach. For surface runoff estimation, the curve number technique considering soil moisture on a daily basis was used, and release rate was used to estimate baseflow. Evapotranspiration was computed using the FAO modified Penman equation that considered land-use-based crop coefficients, soil moisture and the influence of topography on radiation. A rice paddy field water budget model was also adapted for the specific application of the model to East Asia. Model sensitivity analysis was conducted to obtain operational information about the model calibration parameters. The CELTHYM was calibrated and verified with measured runoff data from the WS#1 and WS#3 watersheds of the Seoul National University, Department of Agricultural Engineering, in Hwaseong County, Kyounggi Province, South Korea. The WS#1 watershed is comprised of about 35·4% rice paddy fields and 42·3% forest, whereas the WS#3 watershed is about 85·0% forest and 11·5% rice paddy fields. The CELTHYM was calibrated for the parameter release rate, K, and soil moisture storage coefficient, STC, and results were compared with the measured runoff data for 1986. The validation results for WS#1 considering all daily stream flow were poor with R2, E2 and RMSE having values of 0·40, ,6·63 and 9·69 (mm), respectively, but validation results for days without rainfall were statistically significant (R2 = 0·66). Results for WS#3 showed good agreement with observed data for all days, and R2, E2 and RMSE were 0·92, 0·91 and 2·23 (mm), respectively, suggesting potential for CELTHYM application to other watersheds. The direct runoff and water balance components for watershed WS#1 with significant areas of paddy fields did not perform well, suggesting that additional study of these components is needed. Copyright © 2002 John Wiley & Sons, Ltd. [source] APPLICATION OF THE RHESSys MODEL TO A CALIFORNIA SEMIARID SHRUBLAND WATERSHED,JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 3 2004Christina Tague ABSTRACT: Distributed hydrologic models which link seasonal streamflow and soil moisture patterns with spatial patterns of vegetation are important tools for understanding the sensitivity of Mediterranean type ecosystems to future climate and land use change. RHESSys (Regional Hydro-Ecologic Simulation System) is a coupled spatially distributed hydroecological model that is designed to be able to represent these feedbacks between hydrologic and vegetation carbon and nutrient cycling processes. However, RHESSys has not previously been applied to semiarid shrubland watersheds. In this study, the hydrologic submodel of RHESSys is evaluated by comparing model predictions of monthly and annual streamflow to stream gage data and by comparing RHESSys behavior to that of another hydrologic model of similar complexity, MIKESHE, for a 34 km2 watershed near Santa Barbara, California. In model intercomparison, the differences in predictions of temporal patterns in streamflow, sensitivity of model predictions to calibration parameters and landscape representation, and differences in model estimates of soil moisture patterns are explored. Results from this study show that both models adequately predict seasonal patterns of streamflow response relative to observed data, but differ significantly in terms of estimates of soil moisture patterns and sensitivity of those patterns to the scale of landscape tessellation used to derive spatially distributed elements. This sensitivity has implications for implementing RHESSys as a tool to investigate interactions between hydrology and ecosystem processes. [source] |