| |||
Calcium-activated Potassium Channels (calcium-activated + potassium_channel)
Selected AbstractsCalcium-activated potassium channels and endothelial dysfunction: therapeutic options?BRITISH JOURNAL OF PHARMACOLOGY, Issue 4 2009Michel Félétou The three subtypes of calcium-activated potassium channels (KCa) of large, intermediate and small conductance (BKCa, IKCa and SKCa) are present in the vascular wall. In healthy arteries, BKCa channels are preferentially expressed in vascular smooth muscle cells, while IKCa and SKCa are preferentially located in endothelial cells. The activation of endothelial IKCa and SKCa contributes to nitric oxide (NO) generation and is required to elicit endothelium-dependent hyperpolarizations. In the latter responses, the hyperpolarization of the smooth muscle cells is evoked either via electrical coupling through myo-endothelial gap junctions or by potassium ions, which by accumulating in the intercellular space activate the inwardly rectifying potassium channel Kir2.1 and/or the Na+/K+ -ATPase. Additionally, endothelium-derived factors such as cytochrome P450-derived epoxyeicosatrienoic acids and under some circumstances NO, prostacyclin, lipoxygenase products and hydrogen peroxide (H2O2) hyperpolarize and relax the underlying smooth muscle cells by activating BKCa. In contrast, cytochrome P450-derived 20-hydroxyeicosatetraenoic acid and various endothelium-derived contracting factors inhibit BKCa. Aging and cardiovascular diseases are associated with endothelial dysfunctions that can involve a decrease in NO bioavailability, alterations of EDHF-mediated responses and/or enhanced production of endothelium-derived contracting factors. Because potassium channels are involved in these endothelium-dependent responses, activation of endothelial and/or smooth muscle KCa could prevent the occurrence of endothelial dysfunction. Therefore, direct activators of these potassium channels or compounds that regulate their activity or their expression may be of some therapeutic interest. Conversely, blockers of IKCa may prevent restenosis and that of BKCa channels sepsis-dependent hypotension. Mandarin translation of abstract [source] Contribution of endothelium-derived hyperpolarizing factors to the regulation of vascular tone in humansFUNDAMENTAL & CLINICAL PHARMACOLOGY, Issue 4 2008Jeremy Bellien Abstract Endothelium plays a crucial role in the regulation of cardiovascular homeostasis through the release of vasoactive factors. Besides nitric oxide (NO) and prostacyclin, increasing evidences show that endothelium-derived hyperpolarizing factors (EDHF) participate in the control of vasomotor tone through the activation of calcium-activated potassium channels. In humans, the role of EDHF has been demonstrated in various vascular beds including coronary, peripheral, skin and venous vessels. The mechanisms of EDHF-type relaxations identified in humans involved the release by the endothelium of hydrogen peroxide, epoxyeicosatrienoic acids (EETs), potassium ions and electronical communication through the gap junctions. The role of EETs could be particularly important because, in addition contributing to the maintenance of the basal tone and endothelium-dependent dilation of conduit arteries, these factors share many vascular protective properties of NO. The alteration of which might be involved in the physiopathology of cardiovascular diseases. The evolution of EDHF availability in human pathology is currently under investigation with some results demonstrating an increase in EDHF release to compensate the loss of NO synthesis and to maintain the endothelial vasomotor function whereas others reported a parallel decrease in NO and EDHF-mediated relaxations. Thus, the modulation of EDHF activity emerges as a new pharmacological target and some existing therapies in particular those affecting the renin,angiotensin system have already been shown to improve endothelial function through hyperpolarizing mechanisms. In this context, the development of new specific pharmacological agents especially those increasing EETs availability may help to prevent endothelial dysfunction and therefore enhance cardiovascular protection in patients. [source] A new role for P2 receptors: talking with calcium-activated potassium channelsNEUROGASTROENTEROLOGY & MOTILITY, Issue 11 2007P. P. Bertrand Abstract Purinergic fast synaptic transmission may play a very subtle role in regulating the excitability of enteric circuits. That is one of the important findings in a new paper by Ren and Galligan in the current issue of this Journal. They first provide compelling evidence that P2X3 receptors (ionotropic purine receptors) are expressed by guinea-pig motor and interneurons and that these subtypes mediate the purinergic fast excitatory postsynaptic potential (EPSP). They also found that the P2X3 -mediated depolarization was often followed by a hyperpolarization. This is an intriguing finding because if the purinergic fast EPSPs are also followed by a hyperpolarization, then it could play a role in truncating bursts of synaptic potentials or in shaping periodic synaptic input. The hyperpolarization is caused by calcium entry through the P2X3 receptor which then activates a calcium-activated potassium (KCa) channel. Surprisingly, the hyperpolarization was not affected by any of the standard blockers of calcium- or voltage-activated K+ channels suggesting that a novel KCa channel is present in the enteric neurons. Such a wide-spread channel could well have an important physiological role and could be an important new drug target for regulating reflex activity in the enteric nervous system. [source] Calcium-activated potassium channels and endothelial dysfunction: therapeutic options?BRITISH JOURNAL OF PHARMACOLOGY, Issue 4 2009Michel Félétou The three subtypes of calcium-activated potassium channels (KCa) of large, intermediate and small conductance (BKCa, IKCa and SKCa) are present in the vascular wall. In healthy arteries, BKCa channels are preferentially expressed in vascular smooth muscle cells, while IKCa and SKCa are preferentially located in endothelial cells. The activation of endothelial IKCa and SKCa contributes to nitric oxide (NO) generation and is required to elicit endothelium-dependent hyperpolarizations. In the latter responses, the hyperpolarization of the smooth muscle cells is evoked either via electrical coupling through myo-endothelial gap junctions or by potassium ions, which by accumulating in the intercellular space activate the inwardly rectifying potassium channel Kir2.1 and/or the Na+/K+ -ATPase. Additionally, endothelium-derived factors such as cytochrome P450-derived epoxyeicosatrienoic acids and under some circumstances NO, prostacyclin, lipoxygenase products and hydrogen peroxide (H2O2) hyperpolarize and relax the underlying smooth muscle cells by activating BKCa. In contrast, cytochrome P450-derived 20-hydroxyeicosatetraenoic acid and various endothelium-derived contracting factors inhibit BKCa. Aging and cardiovascular diseases are associated with endothelial dysfunctions that can involve a decrease in NO bioavailability, alterations of EDHF-mediated responses and/or enhanced production of endothelium-derived contracting factors. Because potassium channels are involved in these endothelium-dependent responses, activation of endothelial and/or smooth muscle KCa could prevent the occurrence of endothelial dysfunction. Therefore, direct activators of these potassium channels or compounds that regulate their activity or their expression may be of some therapeutic interest. Conversely, blockers of IKCa may prevent restenosis and that of BKCa channels sepsis-dependent hypotension. Mandarin translation of abstract [source] |