Calcium Uptake (calcium + uptake)

Distribution by Scientific Domains


Selected Abstracts


Effect of Soluble Soybean Protein Hydrolysate-Calcium Complexes on Calcium Uptake by Caco-2 Cells

JOURNAL OF FOOD SCIENCE, Issue 7 2008
Y. Lv
ABSTRACT:, Soybean protein hydrolysates (SPHs) bind with calcium, forming soluble SPH-calcium complexes via the carboxyl groups of glutamic and aspartic acid residues. However, their effect on calcium uptake is still unclear. In this study, Caco-2 cells were used to estimate the effect of SPH-calcium complexes with different molecular weights on calcium uptake in vitro. The changes in intracellular calcium ion concentration were measured by Fura-2 loading and expressed in fluorescence intensity. SPH-calcium complexes could promote calcium uptake. Improved fluorescence intensity was significantly different in SPH-calcium complexes (10 to 30 kDa), SPH-calcium complexes (3 to 10 kDa), and SPH-calcium complexes (1 to 3 kDa). The maximum levels of relative fluorescence intensity (18.3) occurred with SPH-calcium complexes (10 to 30 kDa). The effect of SPH-calcium complexes (10 to 30 kDa) on Ca2+ increase was determined to be concentration dependent in the range of 0.5 to 4 mg/mL. Our results indicate that soybean protein itself might be responsible for promoting calcium absorption. [source]


Effect of Motif-Programmed Artificial Proteins on the Calcium Uptake in a Synthetic Hydrogel

MACROMOLECULAR BIOSCIENCE, Issue 10 2009
Traian V. Chirila
Abstract Motif-programmed artificial proteins with mineralization-related activity were covalently immobilized onto the surface of a hydrogel, poly(2-hydroxyethyl methacrylate) (PHEMA). We investigated the influence of assaying conditions upon the ability of three selected proteins (PS64, PS382 and PS458) to modulate calcification in vitro. A long-term assay measuring the real amount of calcium phosphate phase in the protein-modified PHEMA showed that all proteins enhanced the uptake of calcium by the hydrogel. For PS382 and PS458, this is a behaviour opposite to that displayed when the same proteins were tested in a free state by a rapid solution assay. Such difference may be attributed to a restricted mobility of the proteins due to immobilization. [source]


Casein phosphopeptide promotion of calcium uptake in HT-29 cells , relationship between biological activity and supramolecular structure

FEBS JOURNAL, Issue 19 2007
Claudia Gravaghi
Casein phosphopeptides (CPPs) form aggregated complexes with calcium phosphate and induce Ca2+ influx into HT-29 cells that have been shown to be differentiated in culture. The relationship between the aggregation of CPPs assessed by laser light scattering and their biological effect was studied using the CPPs ,-CN(1,25)4P and ,s1 -CN(59,79)5P, the commercial mixture CPP DMV, the ,cluster sequence' pentapeptide, typical of CPPs, and dephosphorylated ,-CN(1,25)4P, [,-CN(1,25)0P]. The biological effect was found to be: (a) maximal with ,-CN(1,25)4P and null with the ,cluster sequence'; (b) independent of the presence of inorganic phosphate; and (c) maximal at 4 mmol·L,1 Ca2+. The aggregation of CPP had the following features: (a) rapid occurrence; (b) maximal aggregation by ,-CN(1,25)4P with aggregates of 60 nm hydrodynamic radius; (c) need for the concomitant presence of Ca2+ and CPP for optimal aggregation; (d) lower aggregation in Ca2+ -free Krebs/Ringer/Hepes; (e) formation of bigger aggregates (150 nm radius) with ,-CN(1,25)0P. With both ,-CN(1,25)4P and CPP DMV, the maximum biological activity and degree of aggregation were reached at 4 mmol·L,1 Ca2+. [source]


Copper and calcium uptake in colored hair

INTERNATIONAL JOURNAL OF COSMETIC SCIENCE, Issue 2 2010
K. E. Smart
J. Cosmet. Sci., 60, 337,345 (May/June 2009) Accepted for publication December 29, 2008. Synopsis During hair coloring a number of disulfide bonds in cystine are oxidized (1) to create cysteic acid, forming binding sites for metal ions such as Ca2+ and Cu2+ from tap water (2). The increased uptake of these metals can have a detrimental impact on fiber properties,for example, reducing shine and causing a poor wet and dry feel (3). In addition, the increased uptake of copper can also contribute to further fiber damage during subsequent coloring due to its ability to take part in metal-induced radical chemistry (4). It is important to know where in the fibers these metals are located in order to either effectively remove these metals or control their chemistry. Nanoscale secondary ion mass spectrometry (NanoSIMS) has been used to locate the calcium and copper within hair that has been treated with a colorant and washed multiple times in tap water containing these ions. Untreated hair is used as a baseline standard material. Images with up to 50-nm spatial resolution of the preferential locations of calcium uptake were obtained, showing a high concentration of calcium in the cuticle region of colored hair, specifically in the sulfur-rich regions (A-layer and exocuticle). [source]


Modulation of cardiac ionic homeostasis by 3-iodothyronamine

JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 9b 2009
Sandra Ghelardoni
Abstract 3-iodothyronamine (T1AM) is a novel endogenous relative of thyroid hormone, able to interact with trace amine-associated receptors, a class of plasma membrane G protein-coupled receptors, and to produce a negative inotropic and chronotropic effect. In the isolated rat heart 20,25 ,M T1AM decreased cardiac contractility, but oxygen consumption and glucose uptake were either unchanged or disproportionately high when compared to mechanical work. In adult rat cardiomyocytes acute exposure to 20 ,M T1AM decreased the amplitude and duration of the calcium transient. In patch clamped cardiomyocytes sarcolemmal calcium current density was unchanged while current facilitation by membrane depolarization was abolished consistent with reduced sarcoplasmic reticulum (SR) calcium release. In addition, T1AM decreased transient outward current (Ito) and IK1 background current. SR studies involving 20 ,M T1AM revealed a significant decrease in ryanodine binding due to reduced Bmax, no significant change in the rate constant of calcium-induced calcium release, a significant increase in calcium leak measured under conditions promoting channel closure, and no effect on oxalate-supported calcium uptake. Based on these observations we conclude T1AM affects calcium and potassium homeostasis and suggest its negative inotropic action is due to a diminished pool of SR calcium as a result of increased diastolic leak through the ryanodine receptor, while increased action potential duration is accounted for by inhibition of Ito and IK1 currents. [source]


Effect of Soluble Soybean Protein Hydrolysate-Calcium Complexes on Calcium Uptake by Caco-2 Cells

JOURNAL OF FOOD SCIENCE, Issue 7 2008
Y. Lv
ABSTRACT:, Soybean protein hydrolysates (SPHs) bind with calcium, forming soluble SPH-calcium complexes via the carboxyl groups of glutamic and aspartic acid residues. However, their effect on calcium uptake is still unclear. In this study, Caco-2 cells were used to estimate the effect of SPH-calcium complexes with different molecular weights on calcium uptake in vitro. The changes in intracellular calcium ion concentration were measured by Fura-2 loading and expressed in fluorescence intensity. SPH-calcium complexes could promote calcium uptake. Improved fluorescence intensity was significantly different in SPH-calcium complexes (10 to 30 kDa), SPH-calcium complexes (3 to 10 kDa), and SPH-calcium complexes (1 to 3 kDa). The maximum levels of relative fluorescence intensity (18.3) occurred with SPH-calcium complexes (10 to 30 kDa). The effect of SPH-calcium complexes (10 to 30 kDa) on Ca2+ increase was determined to be concentration dependent in the range of 0.5 to 4 mg/mL. Our results indicate that soybean protein itself might be responsible for promoting calcium absorption. [source]


Defective calcium homeostasis in the cerebellum in a mouse model of Niemann,Pick A disease

JOURNAL OF NEUROCHEMISTRY, Issue 6 2005
Luba Ginzburg
Abstract We recently demonstrated that calcium homeostasis is altered in mouse models of two sphingolipid storage diseases, Gaucher and Sandhoff diseases, owing to modulation of the activities of a calcium-release channel (the ryanodine receptor) and of the sarco/endoplasmic reticulum Ca2+ -ATPase (SERCA) respectively, by the accumulating sphingolipids. We now demonstrate that calcium homeostasis is also altered in a mouse model of Niemann,Pick A disease, the acid sphingomyelinase (A-SMase)-deficient mouse (ASM,/,), with reduced rates of calcium uptake via SERCA in the cerebellum of 6,7-month-old mice. However, the mechanism responsible for defective calcium homeostasis is completely different from that observed in the other two disease models. Thus, levels of SERCA expression are significantly reduced in the ASM,/, cerebellum by 6,7 months of age, immediately before death of the mice, as are levels of the inositol 1,4,5-triphosphate receptor (IP3R), the major calcium-release channel in the cerebellum. Systematic analyses of the time course of loss of SERCA and IP3R expression revealed that loss of the IP3R preceeded that of SERCA, with essentially no IP3R remaining by 4 months of age, whereas SERCA was still present even after 6 months. Expression of zebrin II (aldolase C), a protein found in about half of the Purkinje cells in the adult mouse cerebellum, was essentially unchanged during development. We discuss possible pathological mechanisms related to calcium dysfunction that may cause Purkinje cell degeneration, and as a result, the onset of neuropathology in Niemann,Pick A disease. [source]


KP4 fungal toxin inhibits growth in Ustilago maydis by blocking calcium uptake

MOLECULAR MICROBIOLOGY, Issue 4 2001
Matthew J. Gage
KP4 is a virally encoded fungal toxin secreted by the P4 killer strain of Ustilago maydis. From our previous structural studies , it seemed unlikely that KP4 acts by forming channels in the target cell membrane. Instead, KP4 was proposed to act by blocking fungal calcium channels, as KP4 was shown to inhibit voltage-gated calcium channels in rat neuronal cells, and its effects on fungal cells were abrogated by exogenously added calcium. Here, we extend these studies and demonstrate that KP4 acts in a reversible manner on the cell membrane and does not kill the cells, but rather inhibits cell division. This action is mimicked by EGTA and is abrogated specifically by low concentrations of calcium or non-specifically by high ionic strength buffers. We also demonstrate that KP4 affects 45Ca uptake in U. maydis. Finally, we show that cAMP and a cAMP analogue, N 6,2,-O-dibutyryladenosine 3,:5,-cyclic monophosphate, both abrogate KP4 effects. These results suggest that KP4 may inhibit cell growth and division by blocking calcium-regulated signal transduction pathways. [source]


Effect of a novel botanical agent Drynol Cibotin on human osteoblast cells and implications for osteoporosis: promotion of cell growth, calcium uptake and collagen production

PHYTOTHERAPY RESEARCH, Issue S2 2010
Barbara Wegiel
Abstract Osteoporosis is a widespread problem afflicting millions of people. Drynol Cibotinis is a newly developed proprietary botanical combination of eight botanicals including Angelica sinensis, Glycine max, Wild yam, Ligustrum lucidum, Astragalus membranaceus, Cuscuta chinensis, Psoraleae corylifoliae, and Drynaria fortune. Each of the botanicals has been used in traditional Chinese medicine to treat osteoporosis. The effect of Drynol Cibotinis, with the specific combination of these anti-osteoporosis botanicals for promoting bone growth, was examined in this study. The effects of Drynol Cibotin on cell growth, apoptosis, cell spreading, calcium uptake and production of bone matrix proteins Collagen I and Laminin B2 on human osteoblast cells were assessed by BrdU incorporation, TUNEL assay, cell staining, intracellular Ca2+ measurement and Western blot analysis. The results showed that Drynol Cibotin significantly increased cell proliferation and inhibited apoptosis in osteoblasts (P < 0.01). In addition, Drynol Cibotin was found to promote cell spreading and greatly increase calcium uptake both instantaneously and in the long term (P < 0.01). Furthermore, Drynol Cibotin significantly increased production of two key extracellular matrix proteins in bone cells: Collagen I and Laminin B2. These results indicate that Drynol Cibotin alone or in combination with amino acids and vitamins may have prophylactic potentials in osteoporosis. Copyright © 2009 John Wiley & Sons, Ltd. [source]


SERCA function declines with age in adrenergic nerves from the superior cervical ganglion

AUTONOMIC & AUTACOID PHARMACOLOGY, Issue 5-6 2000
W. J. Pottorf
1 Intracellular calcium is a universal second messenger integrating numerous cellular pathways. An age-related breakdown in the mechanisms controlling [Ca2+]i homeostasis could contribute to neuronal degeneration. One component of neuronal calcium regulation believed to decline with age is the function of sarco/endoplasmic reticulum calcium ATPase (SERCA) pumps. 2 Therefore we investigated the impact of age on the capacity of SERCA pumps to control high (68 m M) [K+]-evoked [Ca2+]i -transients in acutely dissociated superior cervical ganglion (SCG) cells from 6- and 20-month-old Fisher-344 rats. Calcium transients were measured by fura-2 microfluorometry in the presence of vanadate (0.1 ,M) to selectively block plasma membrane calcium ATPase (PMCA) pumps, dinitrophenol (100 ,M) to block mitochondrial calcium uptake and extracellular sodium replaced with tetraethylammonium to block Na+/Ca2+ -exchanger, thus forcing the neuronal cells to rely on SERCA uptake to control [Ca2+]i homeostasis. 3 In the presence of these calcium buffering blockers, the rate of recovery of [Ca2+]i was significantly slower and time to recover to approximately 90% of resting [Ca2+]i was significantly greater in SCG cells from old (20 months) compared with young (6 months) animals. 4 This age-related change in the recovery phase of [K+]-evoked [Ca2+]i -transients could not be explained by differences in the sensitivity of SCG cells to the calcium buffering blockers, as no age-related difference in basal [Ca2+]i was observed. 5 These studies illustrate that when rat SCG cells are forced to rely on SERCAs to buffer [K+]-evoked [Ca2+]i -transients, an age-related decline in SERCA function is revealed. Such age-related declines in calcium regulation coupled with neuronal sensitivity to calcium overload underscore the importance of understanding the components of [Ca2+]i homeostasis and the functional compensation that may occur with advancing age. [source]