Calcium Transients (calcium + transient)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


SERCA function declines with age in adrenergic nerves from the superior cervical ganglion

AUTONOMIC & AUTACOID PHARMACOLOGY, Issue 5-6 2000
W. J. Pottorf
1 Intracellular calcium is a universal second messenger integrating numerous cellular pathways. An age-related breakdown in the mechanisms controlling [Ca2+]i homeostasis could contribute to neuronal degeneration. One component of neuronal calcium regulation believed to decline with age is the function of sarco/endoplasmic reticulum calcium ATPase (SERCA) pumps. 2 Therefore we investigated the impact of age on the capacity of SERCA pumps to control high (68 m M) [K+]-evoked [Ca2+]i -transients in acutely dissociated superior cervical ganglion (SCG) cells from 6- and 20-month-old Fisher-344 rats. Calcium transients were measured by fura-2 microfluorometry in the presence of vanadate (0.1 ,M) to selectively block plasma membrane calcium ATPase (PMCA) pumps, dinitrophenol (100 ,M) to block mitochondrial calcium uptake and extracellular sodium replaced with tetraethylammonium to block Na+/Ca2+ -exchanger, thus forcing the neuronal cells to rely on SERCA uptake to control [Ca2+]i homeostasis. 3 In the presence of these calcium buffering blockers, the rate of recovery of [Ca2+]i was significantly slower and time to recover to approximately 90% of resting [Ca2+]i was significantly greater in SCG cells from old (20 months) compared with young (6 months) animals. 4 This age-related change in the recovery phase of [K+]-evoked [Ca2+]i -transients could not be explained by differences in the sensitivity of SCG cells to the calcium buffering blockers, as no age-related difference in basal [Ca2+]i was observed. 5 These studies illustrate that when rat SCG cells are forced to rely on SERCAs to buffer [K+]-evoked [Ca2+]i -transients, an age-related decline in SERCA function is revealed. Such age-related declines in calcium regulation coupled with neuronal sensitivity to calcium overload underscore the importance of understanding the components of [Ca2+]i homeostasis and the functional compensation that may occur with advancing age. [source]


Endocannabinoids mediate muscarine-induced synaptic depression at the vertebrate neuromuscular junction

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 6 2007
Zachary Newman
Abstract Endocannabinoids (eCBs) inhibit neurotransmitter release throughout the central nervous system. Using the Ceratomandibularis muscle from the lizard Anolis carolinensis we asked whether eCBs play a similar role at the vertebrate neuromuscular junction. We report here that the CB1 cannabinoid receptor is concentrated on motor terminals and that eCBs mediate the inhibition of neurotransmitter release induced by the activation of M3 muscarinic acetylcholine (ACh) receptors. N -(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide, a CB1 antagonist, prevents muscarine from inhibiting release and arachidonylcyclopropylamide (ACPA), a CB1 receptor agonist, mimics M3 activation and occludes the effect of muscarine. As for its mechanism of action, ACPA reduces the action-potential-evoked calcium transient in the nerve terminal and this decrease is more than sufficient to account for the observed inhibition of neurotransmitter release. Similar to muscarine, the inhibition of synaptic transmission by ACPA requires nitric oxide, acting via the synthesis of cGMP and the activation of cGMP-dependent protein kinase. 2-Arachidonoylglycerol (2-AG) is responsible for the majority of the effects of eCB as inhibitors of phospholipase C and diacylglycerol lipase, two enzymes responsible for synthesis of 2-AG, significantly limit muscarine-induced inhibition of neurotransmitter release. Lastly, the injection of (5Z,8Z,11Z,14Z)- N -(4-hydroxy-2-methylphenyl)-5,8,11,14-eicosatetraenamide (an inhibitor of eCB transport) into the muscle prevents muscarine, but not ACPA, from inhibiting ACh release. These results collectively lead to a model of the vertebrate neuromuscular junction whereby 2-AG mediates the muscarine-induced inhibition of ACh release. To demonstrate the physiological relevance of this model we show that the CB1 antagonist N -(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide prevents synaptic inhibition induced by 20 min of 1-Hz stimulation. [source]


Modulation of cardiac ionic homeostasis by 3-iodothyronamine

JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 9b 2009
Sandra Ghelardoni
Abstract 3-iodothyronamine (T1AM) is a novel endogenous relative of thyroid hormone, able to interact with trace amine-associated receptors, a class of plasma membrane G protein-coupled receptors, and to produce a negative inotropic and chronotropic effect. In the isolated rat heart 20,25 ,M T1AM decreased cardiac contractility, but oxygen consumption and glucose uptake were either unchanged or disproportionately high when compared to mechanical work. In adult rat cardiomyocytes acute exposure to 20 ,M T1AM decreased the amplitude and duration of the calcium transient. In patch clamped cardiomyocytes sarcolemmal calcium current density was unchanged while current facilitation by membrane depolarization was abolished consistent with reduced sarcoplasmic reticulum (SR) calcium release. In addition, T1AM decreased transient outward current (Ito) and IK1 background current. SR studies involving 20 ,M T1AM revealed a significant decrease in ryanodine binding due to reduced Bmax, no significant change in the rate constant of calcium-induced calcium release, a significant increase in calcium leak measured under conditions promoting channel closure, and no effect on oxalate-supported calcium uptake. Based on these observations we conclude T1AM affects calcium and potassium homeostasis and suggest its negative inotropic action is due to a diminished pool of SR calcium as a result of increased diastolic leak through the ryanodine receptor, while increased action potential duration is accounted for by inhibition of Ito and IK1 currents. [source]


Schwann cells express IP prostanoid receptors coupled to an elevation in intracellular cyclic AMP,

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 6 2007
Naser Muja
Abstract We have shown previously that prostaglandin E2 (PGE2) and prostaglandin I2 (PGI2) are each produced in an explant model of peripheral nerve injury. We report that IP prostanoid receptor mRNA and protein are present in primary rat Schwann cells. IP prostanoid receptor stimulation using prostacyclin produced an elevation in intracellular cyclic AMP concentration ([cAMP]i) in primary Schwann cells. Peak [cAMP]i was observed between 5,15 min of stimulation followed by a gradual recovery toward basal level. Phosphorylation of cyclic AMP-response element binding protein (CREB) on Ser133 was also detected after IP prostanoid receptor stimulation and CREB phosphorylation was inhibited completely by the protein kinase A inhibitor, H-89. Intracellular calcium levels were not affected by IP prostanoid receptor stimulation. Unlike forskolin, IP prostanoid receptor stimulation did not significantly augment Schwann cell proliferation in response to growth factor treatment. However, IP prostanoid receptor stimulation increased the number of Schwann cells that were able to generate a calcium transient in response to P2 purinergic receptor activation. These findings suggest that signaling via the IP prostanoid receptor may by relevant to Schwann cell biology in vivo. © 2007 Wiley-Liss, Inc. [source]


Ethanol-Induced Cephalic Apoptosis Requires Phospholipase C-Dependent Intracellular Calcium Signaling

ALCOHOLISM, Issue 3 2003
Katherine A. Debelak-Kragtorp
Background: Although the ability of ethanol to elicit neural crest cell apoptosis is well documented, the initial target of ethanol in these cells, and the biochemical pathway leading to their apoptosis, have yet to be determined. Recent work in preimplantation mouse embryos demonstrates that ethanol induces a phospholipase-C (PLC)-dependent calcium transient that mediates ethanol's effects. We tested whether a similar effect on calcium and PLC is involved in ethanol-induced neural crest apoptosis. Methods: Chicken embryos were collected and loaded with Fluo-3-AM to assess the effects of ethanol on intracellular calcium levels. Pharmacological agents were used to determine the sources and mechanism of intracellular calcium increases. In separate experiments, embryos were treated in ovo with pharmacological modulators of calcium signaling prior to ethanol exposure, and resulting levels of cell death were assessed by using the vital dye acridine orange. Results: Ethanol exposure caused a localized increase in intracellular calcium levels in embryonic neural folds within 15 sec of ethanol exposure. Ethanol-induced apoptosis was specifically blocked by chelation of intracellular calcium before ethanol exposure. Pretreatment with the PLC inhibitor U73122 blocked ethanol-induced apoptosis as well as the intracellular calcium transient. Depletion of extracellular calcium resulted in a partial block of ethanol-induced apoptosis. Conclusions: Ethanol exposure alters calcium signaling within the neurulation-stage chicken embryo in a PLC-dependent manner. Increases in intracellular calcium and PLC activity are necessary for ethanol's induction of apoptosis within cephalic populations. These effects likely represent an early and crucial event in the pathway leading to ethanol-induced cell death. [source]


Light-to-dark transitions trigger a transient increase in intracellular Ca2+ modulated by the redox state of the photosynthetic electron transport chain in the cyanobacterium Anabaena sp.

PLANT CELL & ENVIRONMENT, Issue 7 2004
PCC7120
ABSTRACT Light-to-dark transitions represent one of the most crucial environmental stresses that photosynthetic organisms must cope with, since substantial metabolism adaptations are required in order to utilize alternative energy and carbon sources. Although signal transduction systems for changing light regimes are not sufficiently understood, calcium has been implicated in plants as a second messenger in light-on and light-off events. Much less is known about light signalling in cyanobacteria, but it has been shown that calcium probably performs similar signalling roles in these organisms and other prokaryotes. Herein it is reported that light-to-dark transitions trigger a calcium transient in aequorin expressing Anabaena sp. PCC7120. The magnitude of this transient depends on the fluence rate previously irradiated and can reach a peak height over 2 µm free calcium when the fluence rate of light is around 400 µmol photons s,1 m,2. The use of increasing calcium concentration, ethylene glycol-bis (, -aminoethylether) N,N,N,,N,-tetraacetic acid (EGTA), verapamil and trifluoperazine indicated that these transients are originated by a calcium influx probably through verapamil-sensitive Ca2+ channels and are probably modulated by calcium-binding proteins. Experiments with different light spectral qualities and the photosynthetic inhibitors 3-(3,4 dichlorophenyl)1,1,dimelthylurea (DCMU) and 3,5-dibromo-3-methyl-b-isopropyl-p-benzoquinone (DBMIB) indicate that the calcium transient triggered by the light-to-dark transition is not coupled to a specific photoreceptor but rather to changes in the redox state of photosynthetic electron transport chain components other than the plastoquinone pool. [source]


Comparison of the myoplasmic calcium transient elicited by an action potential in intact fibres of mdx and normal mice

THE JOURNAL OF PHYSIOLOGY, Issue 21 2008
Stephen Hollingworth
The myoplasmic free [Ca2+] transient elicited by an action potential (,[Ca2+]) was compared in fast-twitch fibres of mdx (dystrophin null) and normal mice. Methods were used that maximized the likelihood that any detected differences apply in vivo. Small bundles of fibres were manually dissected from extensor digitorum longus muscles of 7- to 14-week-old mice. One fibre within a bundle was microinjected with furaptra, a low-affinity rapidly responding fluorescent calcium indicator. A fibre was accepted for study if it gave a stable, all-or-nothing fluorescence response to an external shock. In 18 normal fibres, the peak amplitude and the full-duration at half-maximum (FDHM) of ,[Ca2+] were 18.4 ± 0.5 ,m and 4.9 ± 0.2 ms, respectively (mean ±s.e.m.; 16°C). In 13 mdx fibres, the corresponding values were 14.5 ± 0.6 ,m and 4.7 ± 0.2 ms. The difference in amplitude is statistically highly significant (P= 0.0001; two-tailed t test), whereas the difference in FDHM is not (P= 0.3). A multi-compartment computer model was used to estimate the amplitude and time course of the sarcoplasmic reticulum (SR) calcium release flux underlying ,[Ca2+]. Estimates were made based on several differing assumptions: (i) that the resting myoplasmic free Ca2+ concentration ([Ca2+]R) and the total concentration of parvalbumin ([ParvT]) are the same in mdx and normal fibres, (ii) that [Ca2+]R is larger in mdx fibres, (iii) that [ParvT] is smaller in mdx fibres, and (iv) that [Ca2+]R is larger and [ParvT] is smaller in mdx fibres. According to the simulations, the 21% smaller amplitude of ,[Ca2+] in mdx fibres in combination with the unchanged FDHM of ,[Ca2+] is consistent with mdx fibres having a ,25% smaller flux amplitude, a 6,23% larger FDHM of the flux, and a 9,20% smaller total amount of released Ca2+ than normal fibres. The changes in flux are probably due to a change in the gating of the SR Ca2+ -release channels and/or in their single channel flux. The link between these changes and the absence of dystrophin remains to be elucidated. [source]


Accumulation of cytoplasmic calcium, but not apamin-sensitive afterhyperpolarization current, during high frequency firing in rat subthalamic nucleus cells

THE JOURNAL OF PHYSIOLOGY, Issue 3 2008
Mark Teagarden
The autonomous firing pattern of neurons in the rat subthalamic nucleus (STN) is shaped by action potential afterhyperpolarization currents. One of these is an apamin-sensitive calcium-dependent potassium current (SK). The duration of SK current is usually considered to be limited by the clearance of calcium from the vicinity of the channel. When the cell is driven to fire faster, calcium is expected to accumulate, and this is expected to result in accumulation of calcium-dependent AHP current. We measured the time course of calcium transients in the soma and proximal dendrites of STN neurons during spontaneous firing and their accumulation during driven firing. We compared these to the time course and accumulation of AHP currents using whole-cell and perforated patch recordings. During spontaneous firing, a rise in free cytoplasmic calcium was seen after each action potential, and decayed with a time constant of about 200 ms in the soma, and 80 ms in the dendrites. At rates higher than 10 Hz, calcium transients accumulated as predicted. In addition, there was a slow calcium transient not predicted by summation of action potentials that became more pronounced at high firing frequency. Spike AHP currents were measured in voltage clamp as tail currents after 2 ms voltage pulses that triggered action currents. Apamin-sensitive AHP (SK) current was measured by subtraction of tail currents obtained before and after treatment with apamin. SK current peaked between 10 and 15 ms after an action potential, had a decay time constant of about 30 ms, and showed no accumulation. At frequencies between 5 and 200 spikes s,1, the maximal SK current remained the same as that evoked by a single action potential. AHP current did not have time to decay between action potentials, so at frequencies above 50 spikes s,1 the apamin-sensitive current was effectively constant. These results are inconsistent with the view that the decay of SK current is governed by calcium dynamics. They suggest that the calcium is present at the SK channel for a very short time after each action potential, and the current decays at a rate set by the deactivation kinetics of the SK channel. At high rates, repetitive firing was governed by a fast apamin-insensitive AHP current that did not accumulate, but rather showed depression with increases in activation frequency. A slowly accumulating AHP current, also insensitive to apamin, was extremely small at low rates but became significant with higher firing rates. [source]


Isolated plant nuclei as mechanical and thermal sensors involved in calcium signalling

THE PLANT JOURNAL, Issue 1 2004
Tou Cheu Xiong
Summary Calcium signals in the nucleus elicit downstream effects that are distinct from those of cytosolic calcium signals. In the present work, we have evaluated the ability of plant nuclei to sense stimuli directly and to convert them into calcium changes. We show that individual mechanical stimulation of isolated nuclei elicits a single calcium transient at acidic pHs, whereas a series of stimulations leads to oscillations whose frequency reflects that of the stimuli. Conversely, at alkaline pHs, nuclei respond to temperature but not to stretch. The stretch- and the temperature-activated processes differ by their sensitivity to pharmacological drugs known to affect ion channel activities in animal cells. Our data demonstrate that isolated nuclei are able to gauge physical parameters of their environment. This might have a profound influence on the functioning of calcium-dependent processes known to control a large array of molecular events in the nucleus. [source]


Monocyte-Induced Endothelial Calcium Signaling Mediates Early Xenogeneic Endothelial Activation

AMERICAN JOURNAL OF TRANSPLANTATION, Issue 2 2005
Mark D. Peterson
Hallmarks of delayed xenograft rejection include monocyte infiltration, endothelial cell activation and disruption of the endothelial barrier. The monocyte is an important initiator of this type of rejection because monocytes accumulate within hours after xenografting and prior monocyte depletion suppresses the development of this type of rejection. However, the mechanisms that mediate monocyte-induced xenograft injury are unclear at present. Here we report that human monocytes activate xenogeneic endothelial cells through calcium signals. Monocyte contact with porcine but not human endothelium leads to an endothelial calcium transient mediated via a G-protein-coupled receptor (GPCR) that results in up-regulation of porcine VCAM-1 and E-selectin. Although human monocyte adhesion was greater to porcine than to human endothelium, especially when studied under laminar flow, blockade of the xeno-specific endothelial calcium signals did not reduce adhesion of human monocytes to porcine endothelium. Human monocyte contact to porcine endothelium also resulted in reorganization of the F-actin cytoskeleton with a concomitant increase in endothelial monolayer permeability. In contrast to the effect on adhesion, these changes appear to be regulated through endothelial calcium signals. Taken together, these data suggest that human monocytes are capable of activating xenogeneic endothelial cells through calcium transients, as well as other distinct pathways. [source]


Angiotensin II enhances the afferent arteriolar response to adenosine through increases in cytosolic calcium

ACTA PHYSIOLOGICA, Issue 4 2009
E. Y. Lai
Abstract Aims:, Angiotensin II (Ang II) is a strong renal vasoconstrictor and modulates the tubuloglomerular feedback (TGF). We hypothesized that Ang II at low concentrations enhances the vasoconstrictor effect of adenosine (Ado), the mediator of TGF. Methods:, Afferent arterioles of mice were isolated and perfused, and both isotonic contractions and cytosolic calcium transients were measured. Results:, Bolus application of Ang II (10,12 and 10,10 m) induced negligible vasoconstrictions, while Ang II at 10,8 m reduced diameters by 35%. Ang II at 10,12, 10,10 and 10,8 m clearly enhanced the arteriolar response to cumulative applications of Ado (10,11 to 10,4 m). Ado application increased the cytosolic calcium concentrations in the vascular smooth muscle, which were higher at 10,5 m than at 10,8 m. Ang II (10,11 to 10,6 m) also induced concentration-dependent calcium transients, which were attenuated by AT1 receptor inhibition. Simultaneously applied Ang II (10,10 m) additively enhanced the calcium transients induced by 10,8 and 10,5 m Ado. The transients were partly inhibited by AT1 or A1 receptor antagonists, but not significantly by A2 receptor antagonists. Conclusion:, A low dose of Ang II enhances Ado-induced constrictions, partly via AT1 receptor-mediated calcium increase. Ado increases intracellular calcium by acting on A1 but not A2 receptors. The potentiating effect of Ang II on Ado-induced arteriolar vasoconstrictions may involve calcium sensitization of the contractile machinery, as Ang II only additively increased cytosolic calcium concentrations, while its effect on the arteriolar constriction was more than additive. The potentiating effect of Ang II might contribute to the resetting of TGF. [source]


The calcium-conducting ion channel transient receptor potential canonical 6 is involved in macrophage inflammatory protein-2-induced migration of mouse neutrophils,

ACTA PHYSIOLOGICA, Issue 1 2009
N. Damann
Abstract Aim:, The role of the calcium-conducting ion channel transient receptor potential canonical 6 (TRPC6) in macrophage inflammatory protein-2 (MIP-2) induced migration of mouse neutrophils was investigated. Methods:, Neutrophil granulocytes isolated from murine bone marrow of wild-type (TRPC6+/+) and TRPC6 knockout (TRPC6,/,) mice were tested for the presence of TRPC6 channel expression using quantitative real-time polymerase chain reactions and immunocytochemistry. The effect of different stimuli (e.g. MIP-2, 1-oleoyl-2-acetyl-sn-glycerol, formyl-methionyl-leucyl-phenylalanin) on migration of isolated neutrophils was tested by two-dimensional (2D) migration assays, phalloidin staining and intracellular calcium imaging. Results:, We found that neutrophil granulocytes express TRPC6 channels. MIP-2 induced fast cell migration of isolated neutrophils in a 2D cell-tracking system. Strikingly, MIP-2 was less potent in neutrophils derived from TRPC6,/, mice. These cells showed less phalloidin-coupled fluorescence and the pattern of cytosolic calcium transients was altered. Conclusions:, We describe in this paper for the first time a role for transient receptor potential (TRP) channels in migration of native lymphocytes as a new paradigm for the universal functional role of TRPs. Our data give strong evidence that TRPC6 operates downstream to CXC-type Gq -protein-coupled chemokine receptors upon stimulation with MIP-2 and is crucial for the arrangement of filamentous actin in migrating neutrophils. This is a novel cell function of TRP channel beyond their well-recognized role as universal cell sensors. [source]


Calcium imaging of epileptiform events with single-cell resolution

DEVELOPMENTAL NEUROBIOLOGY, Issue 3 2001
Tudor Badea
Abstract Epileptic discharges propagate through apparently normal circuits, although it is still unclear how this recruitment takes place. To understand the role of different classes of neurons in neocortical epilepsy, we have developed a novel imaging assay that detects which neurons participate in epileptiform discharges. Using calcium imaging of neuronal populations during bicuculline-induced spontaneous epileptiform events in slices from juvenile mouse somatosensory cortex, we find that fast calcium transients correlate with epileptiform field potentials and intracellular depolarizing shifts and can be used as an optical signature that a given neuron has participated in an epileptiform event. Our results demonstrate a novel method to characterize epileptiform events with single-cell resolution. In addition, our data are consistent with an important role for layer 5 in generating neocortical seizures and indicate that subgroups of neurons are particularly prone to epileptiform recruitment. © 2001 John Wiley & Sons, Inc. J Neurobiol 48: 215,227, 2001 [source]


Dynamics of action potential backpropagation in basal dendrites of prefrontal cortical pyramidal neurons

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 4 2008
Wen-Liang Zhou
Abstract Basal dendrites of neocortical pyramidal neurons are relatively short and directly attached to the cell body. This allows electrical signals arising in basal dendrites to strongly influence the neuronal output. Likewise, somatic action potentials (APs) should readily propagate back into the basilar dendritic tree to influence synaptic plasticity. Two recent studies, however, determined that sodium APs are severely attenuated in basal dendrites of cortical pyramidal cells, so that they completely fail in distal dendritic segments. Here we used the latest improvements in the voltage-sensitive dye imaging technique (Zhou et al., 2007) to study AP backpropagation in basal dendrites of layer 5 pyramidal neurons of the rat prefrontal cortex. With a signal-to-noise ratio of >,15 and minimal temporal averaging (only four sweeps) we were able to sample AP waveforms from the very last segments of individual dendritic branches (dendritic tips). We found that in short- (< 150 µm) and medium (150,200 µm in length)-range basal dendrites APs backpropagated with modest changes in AP half-width or AP rise-time. The lack of substantial changes in AP shape and dynamics of rise is inconsistent with the AP-failure model. The lack of substantial amplitude boosting of the third AP in the high-frequency burst also suggests that in short- and medium-range basal dendrites backpropagating APs were not severely attenuated. Our results show that the AP-failure concept does not apply in all basal dendrites of the rat prefrontal cortex. The majority of synaptic contacts in the basilar dendritic tree actually received significant AP-associated electrical and calcium transients. [source]


Secreted factors from ventral telencephalon induce the differentiation of GABAergic neurons in cortical cultures

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2006
H.-h. Trinh
Abstract It is widely believed that the pyramidal cells and interneurons of the cerebral cortex are distinct in their origin, lineage and genetic make up. In view of these findings, the current thesis is that the phenotype determination of cortical neurons is primarily directed by genetic mechanisms. Using in vitro assays, the present study demonstrates that secreted factors from ganglionic eminence (GE) of the ventral telencephalon have the potency to induce the differentiation of a subset of cortical neurons towards ,-aminobutyric acid (GABA)ergic lineage. Characterization of cortical cultures that were exposed to medium derived from GE illustrated a significant increase in the number of GABA-, calretinin- and calbindin-positive neurons. Calcium imaging together with pharmacological studies showed that the application of exogenous medium significantly elevated the intracellular calcium transients in cortical neurons through the activation of ionotropic glutamate receptors. The increase in GABA+ neurons appeared to be associated with the elevated calcium activity; treatment with blockers specific for glutamate receptors abolished both the synchronized transients and reduced the differentiation of GABAergic neurons. Such studies demonstrate that although intrinsic mechanisms determine the fate of cortical interneurons, extrinsic factors have the potency to influence their neurochemical differentiation and contribute towards their molecular diversity. [source]


Astrocytic calcium signals induced by neuromodulators via functional metabotropic receptors in the ventral respiratory group of neonatal mice

GLIA, Issue 8 2009
Kai Härtel
Abstract A controlled, periodic exchange of air between lungs and atmosphere requires a neuronal rhythm generated by a network of neurons in the ventral respiratory group (VRG) of the brainstem. Glial cells, e.g. astrocytes, have been shown to be supportive in stabilizing this neuronal activity in the central nervous system during development. In addition, a variety of neuromodulators including serotonin (5-HT), Substance P (SP), and thyrotropin-releasing hormone (TRH) stimulate respiratory neurons directly. If astrocytes in the VRG, like their neuronal neighbors, are also directly stimulated by neuromodulators, they might indirectly affect the respiratory neurons and consequently the respiratory rhythm. In the present study, we provide support for this concept by demonstrating expression of NK1-R, TRH-R, and 5-HT2 -R in astrocytes of the VRG with immunohistochemistry. Additionally, we showed that the external application of the neuromodulators 5-HT, SP, and TRH activate calcium transients in VRG astrocytes. Consequently, we postulate that in the VRG of the neonatal mouse, neuromodulation by SP, TRH, and serotonin also involves astrocytic calcium signaling. © 2008 Wiley-Liss, Inc. [source]


Calcium signaling in invertebrate glial cells

GLIA, Issue 7 2006
Christian Lohr
Abstract Calcium signaling studies in invertebrate glial cells have been performed mainly in the nervous systems of the medicinal leech (Hirudo medicinalis) and the sphinx moth Manduca sexta. The main advantages of studing glial cells in invertebrate nervous systems are the large size of invertebrate glial cells and their easy accessibility for optical and electrophysiological recordings. Glial cells in both insects and annelids express voltage-gated calcium channels and, in the case of leech glial cells, calcium-permeable neurotransmitter receptors, which allow calcium influx as one major source for cytosolic calcium transients. Calcium release from intracellular stores can be induced by metabotropic receptor activation in leech glial cells, but appears to play a minor role in calcium signaling. In glial cells of the antennal lobe of Manduca, voltage-gated calcium signaling changes during postembryonic development and is essential for the migration of the glial cells, a key step in axon guidance and in stabilization of the glomerular structures that are characteristic of primary olfactory centers. © 2006 Wiley-Liss, Inc. [source]


Blockage of voltage-gated calcium signaling impairs migration of glial cells in vivo

GLIA, Issue 3 2005
Christian Lohr
Abstract Migration of glial cells is an essential step in the development of the antennal lobe, the primary olfactory center of insects, to establish well-defined borders between olfactory glomeruli required for odor discrimination. In the present study, we used two-photon microscopy to visualize calcium signaling in developing antennal lobe glial cells of the sphinx moth Manduca sexta. We found a correlation between the upregulation of functional voltage-gated calcium channels and the onset of glial cell migration. In addition, glial cells migrating into the center of the antennal lobe express larger voltage-gated calcium transients than glial cells that remain at the periphery. Migration behavior and calcium signaling of glial cells in vivo were manipulated either by deafferentation, by injection of the calcium channel blockers diltiazem, verapamil, and flunarizine, or by injection of the calcium chelators BAPTA-AM and Fluo-4-AM. In deafferented antennal lobes, glial cells failed to express functional voltage-gated calcium channels and did not migrate. Calcium channel blockage or reducing glial calcium signals by calcium chelators prevented glial cell migration and resulted in antennal lobes lacking glial borders around glomeruli, indicating that voltage-gated calcium signaling is required for the migration of antennal lobe glial cells and the development of mature olfactory glomeruli. © 2005 Wiley-Liss, Inc. [source]


Calcium dynamics of hemocytes of the gastropod Biomphalaria glabrata: effects of digenetic trematodes and selected bioactive compounds

INVERTEBRATE BIOLOGY, Issue 1 2000
Lynn A. Hertel
Abstract. Two fluorescent calcium indicators, Calcium Green AM (CG) and Fura Red AM (FR), were used in conjunction with confocal microscopy to monitor hemocyte calcium dynamics following exposure to digenetic trematode larvae or relevant bioactive compounds. Changes in intracellular calcium levels, as measured by fluctuations in the CG/FR ratio, were correlated with hemocyte morphological changes. Hemocytes exposed to culture medium remained spread and had few calcium transients. However, following exposure to sporocysts, sporocyst secretory-excretory products, or small rediae of Echinostoma paraensei in culture medium, significantly more hemocytes both rounded up and exhibited calcium transients, though some hemocytes showed one response or the other but not both. Hemocytes did not respond significantly to large rediae, to sporocysts of another digenean (Schistosoma mansoni), or to bacterial lipopolysaccharides. Exposure to either zymosan particles or mannose BSA provoked responses similar to those seen with sporocysts of E. paraensei Caffeine caused rounding but no calcium transients, and phorbol myristate acetate provoked calcium transients but no rounding. The results show that sporocysts and small rediae of E. paraensei have pronounced effects on hemocyte rounding and calcium dynamics, and that these two events can occur independently of one another. This suggests that parasites may influence hemocytes in at least two separate ways. [source]


Effect of otilonium bromide on contractile patterns in the human sigmoid colon

NEUROGASTROENTEROLOGY & MOTILITY, Issue 6 2010
D. Gallego
Abstract Background, The mechanism of action of the spasmolytic compound otilonium bromide (OB) on human colonic motility is not understood. The aim of our study was to characterize the pharmacological effects of OB on contractile patterns in the human sigmoid colon. Methods, Circular sigmoid strips were studied in organ baths. Isolated smooth muscle cells from human sigmoid colon were examined using the calcium imaging technique. Key Results, Otilonium bromide inhibited by 85% spontaneous non-neural rhythmic phasic contractions (RPCs), (IC50 = 49.9 nmol L,1) and stretch-induced tone (IC50 = 10.7 nmol L,1) with maximum effects at micromolar range. OB also inhibited by 50% both on- (IC50 = 38.0 nmol L,1) and off- contractions induced by electrical stimulation of excitatory motor neurons. In contrast, the inhibitory latency period prior to off -contractions was unaffected by OB. OB inhibited acetylcholine-, substance P-, and neurokinin A-induced contractions. The L-type Ca2+ channel agonist BayK8644 reversed the effects of OB on RPCs, on- and off -contractions. Hexamethonium, atropine, the NK2 antagonist, or depletion of intracellular Ca2+ stores by thapsigargin did not prevent the inhibitory effect of OB on RPCs and electrical contractions. KCl-induced calcium transients in isolated smooth muscle cells were also inhibited by OB (IC50 = 0.2 ,mol L,1). Conclusions & Inferences, Otilonium bromide strongly inhibited the main patterns of human sigmoid motility in vitro by blocking calcium influx through L-type calcium channels on smooth muscle cells. This pharmacological profile may mediate the clinically observed effects of the drug in patients with irritable bowel syndrome. [source]


Accumulation of cytoplasmic calcium, but not apamin-sensitive afterhyperpolarization current, during high frequency firing in rat subthalamic nucleus cells

THE JOURNAL OF PHYSIOLOGY, Issue 3 2008
Mark Teagarden
The autonomous firing pattern of neurons in the rat subthalamic nucleus (STN) is shaped by action potential afterhyperpolarization currents. One of these is an apamin-sensitive calcium-dependent potassium current (SK). The duration of SK current is usually considered to be limited by the clearance of calcium from the vicinity of the channel. When the cell is driven to fire faster, calcium is expected to accumulate, and this is expected to result in accumulation of calcium-dependent AHP current. We measured the time course of calcium transients in the soma and proximal dendrites of STN neurons during spontaneous firing and their accumulation during driven firing. We compared these to the time course and accumulation of AHP currents using whole-cell and perforated patch recordings. During spontaneous firing, a rise in free cytoplasmic calcium was seen after each action potential, and decayed with a time constant of about 200 ms in the soma, and 80 ms in the dendrites. At rates higher than 10 Hz, calcium transients accumulated as predicted. In addition, there was a slow calcium transient not predicted by summation of action potentials that became more pronounced at high firing frequency. Spike AHP currents were measured in voltage clamp as tail currents after 2 ms voltage pulses that triggered action currents. Apamin-sensitive AHP (SK) current was measured by subtraction of tail currents obtained before and after treatment with apamin. SK current peaked between 10 and 15 ms after an action potential, had a decay time constant of about 30 ms, and showed no accumulation. At frequencies between 5 and 200 spikes s,1, the maximal SK current remained the same as that evoked by a single action potential. AHP current did not have time to decay between action potentials, so at frequencies above 50 spikes s,1 the apamin-sensitive current was effectively constant. These results are inconsistent with the view that the decay of SK current is governed by calcium dynamics. They suggest that the calcium is present at the SK channel for a very short time after each action potential, and the current decays at a rate set by the deactivation kinetics of the SK channel. At high rates, repetitive firing was governed by a fast apamin-insensitive AHP current that did not accumulate, but rather showed depression with increases in activation frequency. A slowly accumulating AHP current, also insensitive to apamin, was extremely small at low rates but became significant with higher firing rates. [source]


Monocyte-Induced Endothelial Calcium Signaling Mediates Early Xenogeneic Endothelial Activation

AMERICAN JOURNAL OF TRANSPLANTATION, Issue 2 2005
Mark D. Peterson
Hallmarks of delayed xenograft rejection include monocyte infiltration, endothelial cell activation and disruption of the endothelial barrier. The monocyte is an important initiator of this type of rejection because monocytes accumulate within hours after xenografting and prior monocyte depletion suppresses the development of this type of rejection. However, the mechanisms that mediate monocyte-induced xenograft injury are unclear at present. Here we report that human monocytes activate xenogeneic endothelial cells through calcium signals. Monocyte contact with porcine but not human endothelium leads to an endothelial calcium transient mediated via a G-protein-coupled receptor (GPCR) that results in up-regulation of porcine VCAM-1 and E-selectin. Although human monocyte adhesion was greater to porcine than to human endothelium, especially when studied under laminar flow, blockade of the xeno-specific endothelial calcium signals did not reduce adhesion of human monocytes to porcine endothelium. Human monocyte contact to porcine endothelium also resulted in reorganization of the F-actin cytoskeleton with a concomitant increase in endothelial monolayer permeability. In contrast to the effect on adhesion, these changes appear to be regulated through endothelial calcium signals. Taken together, these data suggest that human monocytes are capable of activating xenogeneic endothelial cells through calcium transients, as well as other distinct pathways. [source]


The Initiation of the Microglial Response

BRAIN PATHOLOGY, Issue 1 2000
Hiroyuki Kato
The initial response of microglia to ischemia and ischemia-like conditions was analyzed in situ and in vitro. After sublethal ischemia in situ, microglia appear activated morphologically, but do not express macrophage-like antigens. In contrast, neuronal damage induces full expression of immunomolecules in microglia. Additionally, blood-borne cells readily infiltrate the region of the ischemic core and constitute another source of cells with macrophage-like expression. Thus, it appears that the microglia are the earliest cells to respond to injury, but their response is graded and complicated by the presence of blood-borne immune cells. In vitro ischemia-like conditions caused an irreversible depolarization, ion channel shutdown, and blebbing, indicating that microglia are not equipped to withstand an ischemic insult. Application of ATP alone to microglia produced outward currents and calcium transients and these calcium transients increased when ATP was applied in combination with high potassium. It is known that both outward currents and calcium transients are induced during spreading depression, a feature of focal injury, and this suggests that spreading depression might be one of the initial activators of microglia. [source]


Regional variation in electrically-evoked contractions of rabbit isolated pulmonary artery

BRITISH JOURNAL OF PHARMACOLOGY, Issue 4 2002
V Margaret Jackson
Electrically-evoked contractions in different regions of the rabbit isolated pulmonary artery have been investigated using stimulation parameters generally assumed to stimulate nerves selectively. In extrapulmonary artery, trains of stimuli (10 Hz; pulse width 0.1 ms) evoked monophasic contractions. In contrast, a biphasic contraction was evoked in the intrapulmonary artery consisting of an initial fast component followed by a secondary very long-lasting component. The contraction in the extrapulmonary artery was prazosin-sensitive (1 ,M) whereas that in the intrapulmonary artery was prazosin-resistant. ,,,-Methylene ATP (1 ,M), atropine (1 ,M), losartan (1 ,M), BIBO3304 (1 nM) or nifedipine (1 ,M) had no effect on the biphasic contraction of the intrapulmonary artery. Bretylium (2 ,M) abolished the contraction of extrapulmonary artery but only partially inhibited the initial component in the intra region with no effect on the second component. Tetrodotoxin (0.3,1 ,M), abolished the contraction of extrapulmonary artery but only partially reduced the electrically-evoked contraction of intrapulmonary artery. Removal of the endothelium and application of sulphisoxazole (0.6,22 ,M) had no effect. Varying the resting tone on the arteries, or applying gadolinium, had no effect on contractions. Using confocal microscopy and calcium imaging, reproducible whole cell calcium transients were evoked in individual smooth muscle cells in intact preparations but only when direct muscle stimulation was used (pulse width of 5,10 ms). No detectable changes in calcium were elicited when brief pulse widths were used (0.1,2 ms). Together, these data suggest that noradrenaline is the neurotransmitter inducing contraction in extrapulmonary artery. Noradrenaline and sympathetic nerves appear to play a less important role in the intrapulmonary artery. The tetrodoxin-resistant component is not mediated by ATP, NPY, acetylcholine, angiotensins, ET-1, stretch-activation or Ca2+ influx through L-type Ca2+ channels. Smooth muscle cells do not appear to be damaged by the stimulation protocol. The mechanism underlying the long lasting contraction of intrapulmonary artery evoked by brief electrical stimuli remains to be elucidated. British Journal of Pharmacology (2002) 137, 488,496. doi:10.1038/sj.bjp.0704863 [source]


The phosphatidylinositol 3-kinase,Akt pathway protects cardiomyocytes from ischaemic and hypoxic apoptosis via mitochondrial function

CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 5-6 2010
Hua-Pei Song
Summary 1.,After a severe burn, a marked decrease in myocardial blood flow results in ischaemic and hypoxic injury, which subsequently leads to apoptosis or necrosis. Phosphatidylinositol 3-kinase (PI3-K)/Akt is an important intracellular signal transduction molecule that regulates cell proliferation, differentiation, glucose metabolism and migration. However, the function and mechanisms of the PI3-K,Akt pathway in cardiomyocyte apoptosis after a burn remain unclear. 2.,In the present study, an in vivo rat model of burn injury and an in vitro hypoxic model using rat cardiomyocytes were established. In burned rats, the expression of PI3-K and phosphorylated (p-) Akt expression increased, as did myocardial apoptosis. Inhibition of the PI3-K,Akt pathway with 1.4 mg/kg LY294002 caused a significant increase in the myocardial apoptotic index compared with hypoxia alone in the in vivo model. 3.,Cardiomyocytes cultured under hypoxic conditions exhibited increased apoptosis, decreased cell viability, enhanced caspase 3 activity, a decreased mitochondrial membrane potential, increased cytoplasmic calcium transients and increased p53 and Bax mRNA expression. Pretreatment with 50 ,mol/L LY294002 significantly enhanced all these negative indicators compared with hypoxia alone. In contrast, pretreatment of cells with 200 ng/mL insulin-like growth factor-1, an activator of PI3-K,Akt, significantly ameliorated the effects of hypoxia, although control levels were not reached. 4.,These findings indicate that activation of the PI3-K,Akt pathway induced by ischaemia and hypoxia after a severe burn can protect cardiomyocytes from apoptosis. This anti-apoptotic effect is most likely mediated via the mitochondria and changes in p53 and Bax gene expression, intracellular [Ca2+] and caspase 3 activity. [source]


Role Of Protein Kinase C In Myogenic Calcium, Contraction Coupling Of Rat Cannulated Mesenteric Small Arteries

CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 10 2001
Jos Pm Wesselman
SUMMARY 1. The present study was designed to determine the role of protein kinase C (PKC) in the myogenic response of small arteries. In particular, we tested whether inhibition of PKC reverses the previously found pressure-induced elevation of contractile element calcium sensitivity. 2. Rat mesenteric small arteries were cannulated and pressurized. The internal diameter was continuously monitored with a video camera and intracellular calcium levels were measured by means of fura-2. Myogenic responses were observed when the pressure was raised stepwise from 20 to 60 and then to 100 mmHg in physiological saline solution and during application of phenylephrine (0.1 or 1 ,mol/L) or potassium (36 mmol/L). 3. The PKC inhibitors H-7 (20 ,mol/L), staurosporine (100 nmol/L) and calphostin C (10 nmol/L) all completely abolished the myogenic response. Whereas staurosporine caused an ongoing reduction in intracellular calcium, pressure-induced calcium transients were not affected by either H-7 or calphostin C. In particular, the slope of the wall tension,calcium relationship remained similar in the presence of both H-7 and calphostin C, despite an upward shift of this relationship to higher calcium levels in the case of calphostin C. 4. These results show that activity of PKC isoform(s) is essential for myogenic calcium,contraction coupling. [source]


BMP-2 and FGF-2 Synergistically Facilitate Adoption of a Cardiac Phenotype in Somatic Bone Marrow c-kit+/Sca-1+ Stem Cells

CLINICAL AND TRANSLATIONAL SCIENCE, Issue 2 2008
Brent R. DeGeorge, Jr. B.S.
Abstract The aim of this study was to explore the effect of bone morphogenetic protein-2 (BMP-2) and fibroblast growth factor-2 (FGF-2), paracrine factors implicated in both cardiac embryogenesis and cardiac repair following myocardial infarction (MI),on murine bone marrow stem cell (mBMSC) differentiation in an ex vivo cardiac microenvironment. For this purpose, green fluorescent protein (GFP) expressing hematopoietic lineage negative (lin-) c-kit ligand (c-kit) and stem cell antigen-1 (Sca-1) positive (GFP-lin-/c-kit+/sca+) mBMSC were co-cultured with neonatal rat ventricular cardiomyocytes (NVCMs). GFP+ mBMSC significantly induced the expression of BMP-2 and FGF-2 in NVCMs, and approximately 4% GFP+ mBMSCs could be recovered from the co-culture at day 10. The addition of BMP-2 in concert with FGF-2 significantly enhanced the amount of integrated GFP+ mBMSCs by 5-fold (,20%), whereas the addition of anti-BMP-2 and/or anti-FGF-2 antibodies completely abolished this effect. An analysis of calcium cycling revealed robust calcium transients in GFP+ mBMSCs treated with BMP-2/FGF-2 compared to untreated co-cultures. BMP-2 and FGF-2 addition led to a significant induction of early (NK2 transcription factor related, locus 5; Nkx2.5, GATA binding protein 4; GATA-4) and late (myosin light chain kinase [MLC-2v], connexin 43 [Cx43]) cardiac marker mRNA expression in mBMSCs following co-culture. In addition, re-cultured fluorescence-activated cell sorting (FACS)-purified BMP-2/FGF-2-treated mBMSCs revealed robust calcium transients in response to electrical field stimulation which were inhibited by the L-type calcium channel (LTCC) inhibitor, nifedipine, and displayed caffeine-sensitive intracellular calcium stores. In summary, our results show that mBMSCs can adopt a functional cardiac phenotype through treatment with factors essential to embryonic cardiogenesis that are induced after cardiac ischemia. This study provides the first evidence that mBMSCs with long-term self-renewal potential possess the capability to serve as a functional cardiomyocyte precursor through the appropriate paracrine input and cross-talk within an appropriate cardiac microenvironment. [source]