Calcium Sensor (calcium + sensor)

Distribution by Scientific Domains


Selected Abstracts


Ca2+ -dependent Regulation of Phototransduction,

PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 4 2008
Ricardo Stephen
Photon absorption by rhodopsin triggers the phototransduction signaling pathway that culminates in degradation of cGMP, closure of cGMP-gated ion channels and hyperpolarization of the photoreceptor membrane. This process is accompanied by a decrease in free Ca2+ concentration in the photoreceptor cytosol sensed by Ca2+ -binding proteins that modulate phototransduction and activate the recovery phase to reestablish the photoreceptor dark potential. Guanylate cyclase-activating proteins (GCAPs) belong to the neuronal calcium sensor (NCS) family and are responsible for activating retinal guanylate cyclases (retGCs) at low Ca2+ concentrations triggering synthesis of cGMP and recovery of the dark potential. Here we review recent structural insight into the role of the N-terminal myristoylation in GCAPs and compare it to other NCS family members. We discuss previous studies identifying regions of GCAPs important for retGC1 regulation in the context of the new structural data available for myristoylated GCAP1. In addition, we present a hypothetical model for the Ca2+ -triggered conformational change in GCAPs and retGC1 regulation. Finally, we briefly discuss the involvement of mutant GCAP1 proteins in the etiology of retinal degeneration as well as the importance of other Ca2+ sensors in the modulation of phototransduction. [source]


TRPC channels function independently of STIM1 and Orai1

THE JOURNAL OF PHYSIOLOGY, Issue 10 2009
Wayne I. DeHaven
Recent studies have defined roles for STIM1 and Orai1 as calcium sensor and calcium channel, respectively, for Ca2+ -release activated Ca2+ (CRAC) channels, channels underlying store-operated Ca2+ entry (SOCE). In addition, these proteins have been suggested to function in signalling and constructing other channels with biophysical properties distinct from the CRAC channels. Using the human kidney cell line, HEK293, we examined the hypothesis that STIM1 can interact with and regulate members of a family of non-selective cation channels (TRPC) which have been suggested to also function in SOCE pathways under certain conditions. Our data reveal no role for either STIM1 or Orai1 in signalling of TRPC channels. Specifically, Ca2+ entry seen after carbachol treatment in cells transiently expressing TRPC1, TRPC3, TRPC5 or TRPC6 was not enhanced by the co-expression of STIM1. Further, knockdown of STIM1 in cells expressing TRPC5 did not reduce TRPC5 activity, in contrast to one published report. We previously reported in stable TRPC7 cells a Ca2+ entry which was dependent on TRPC7 and appeared store-operated. However, we show here that this TRPC7-mediated entry was also not dependent on either STIM1 or Orai1, as determined by RNA interference (RNAi) and expression of a constitutively active mutant of STIM1. Further, we determined that this entry was not actually store-operated, but instead TRPC7 activity which appears to be regulated by SERCA. Importantly, endogenous TRPC activity was also not regulated by STIM1. In vascular smooth muscle cells, arginine-vasopressin (AVP) activated non-selective cation currents associated with TRPC6 activity were not affected by RNAi knockdown of STIM1, while SOCE was largely inhibited. Finally, disruption of lipid rafts significantly attenuated TRPC3 activity, while having no effect on STIM1 localization or the development of ICRAC. Also, STIM1 punctae were found to localize in regions distinct from lipid rafts. This suggests that TRPC signalling and STIM1/Orai1 signalling occur in distinct plasma membrane domains. Thus, TRPC channels appear to be activated by mechanisms dependent on phospholipase C which do not involve the Ca2+ sensor, STIM1. [source]


Identification and characterisation of GPR100 as a novel human G-protein-coupled bradykinin receptor

BRITISH JOURNAL OF PHARMACOLOGY, Issue 5 2003
Katrin Boels
G-protein-coupled receptor 100 (GPR100) was discovered by searching the human genome database for novel G-protein-coupled peptide receptors. Full-length GPR100 was amplified from a cDNA library of the neuroendocrine cell line BON, which is derived from a human pancreas carcinoid. The open-reading frame, present on a single exon, coded for a protein of 374 amino acids with highest sequence identity (43%) to the human orphan somatostatin- and angiotensin-like peptide receptor. The analysis of chromosomal localisation mapped the GPR100 gene to chromosome 1q21.2,q21.3. The stable expression of GPR100 in Chinese hamster ovary cells together with aequorin as calcium sensor and the promiscuous G-protein subunit ,16 as signal transducer revealed bradykinin and kallidin as effectors to elicit a calcium response. Dose,response curves yielded EC50 values for both ligands in the low nanomolar range, while the respective analogues without arginine at the carboxy-terminus were inactive. Calcium mobilisation was inhibited by the phospholipase C blocker U73122, but not by pertussis toxin, suggesting the involvement of the G-protein subunit ,q and not ,i or ,o in signal transduction. In line with the main function of kinins as peripheral hormones, we found that GPR100 was expressed predominantly in tissues like pancreas, heart, skeletal muscle, salivary gland, bladder, kidney, liver, placenta, stomach, jejunum, thyroid gland, ovary, and bone marrow, but smaller amounts were also detected in the brain and in cell lines derived from tumours of various origins. British Journal of Pharmacology (2003) 140, 932,938. doi:10.1038/sj.bjp.0705521 [source]


What determines the degree of compactness of a calcium-binding protein?

FEBS JOURNAL, Issue 4 2009
Liliane Mouawad
The EF-hand calcium-binding proteins may exist either in an extended or a compact conformation. This conformation is sometimes correlated with the function of the calcium-binding protein. For those proteins whose structure and function are known, calcium sensors are usually extended and calcium buffers compact; hence, there is interest in predicting the form of the protein starting from its sequence. In the present study, we used two different procedures: one that already exists in the literature, the sosuidumbbell algorithm, mainly based on the charges of the two EF-hand domains, and the other comprising a novel procedure that is based on linker average hydrophilicity. The linker consists of the residues that connect the domains. The two procedures were tested on 17 known-structure calcium-binding proteins and then applied to 59 unknown-structure centrins. The sosuidumbbell algorithm yielded the correct conformations for only 15 of the known-structure proteins and predicted that all centrins should be in a closed form. The linker average hydrophilicity procedure discriminated well between all the extended and non-extended forms of the known-structure calcium-binding proteins, and its prediction concerning centrins reflected well their phylogenetic classification. The linker average hydrophilicity criterion is a simple and powerful means to discriminate between extended and non-extended forms of calcium-binding proteins. What is remarkable is that only a few residues that constitute the linker (between 2 and 20 in our tested sample of proteins) are responsible for the form of the calcium-binding protein, showing that this form is mainly governed by short-range interactions. [source]


Irregular dimerization of guanylate cyclase-activating protein 1 mutants causes loss of target activation

FEBS JOURNAL, Issue 18 2004
Ji-Young Hwang
Guanylate cyclase-activating proteins (GCAPs) are neuronal calcium sensors that activate membrane bound guanylate cyclases (EC 4.6.1.2.) of vertebrate photoreceptor cells when cytoplasmic Ca2+ decreases during illumination. GCAPs contain four EF-hand Ca2+ -binding motifs, but the first EF-hand is nonfunctional. It was concluded that for GCAP-2, the loss of Ca2+ -binding ability of EF-hand 1 resulted in a region that is crucial for targeting guanylate cyclase [Ermilov, A.N., Olshevskaya, E.V. & Dizhoor, A.M. (2001) J. Biol. Chem.276, 48143,48148]. In this study we tested the consequences of mutations in EF-hand 1 of GCAP-1 with respect to Ca2+ binding, Ca2+ -induced conformational changes and target activation. When the nonfunctional first EF-hand in GCAP-1 is replaced by a functional EF-hand the chimeric mutant CaM,GCAP-1 bound four Ca2+ and showed similar Ca2+ -dependent changes in tryptophan fluorescence as the wild-type. CaM,GCAP-1 neither activated nor interacted with guanylate cyclase. Size exclusion chromatography revealed that the mutant tended to form inactive dimers instead of active monomers like the wild-type. Critical amino acids in EF-hand 1 of GCAP-1 are cysteine at position 29 and proline at position 30, as changing these to glycine was sufficient to cause loss of target activation without a loss of Ca2+ -induced conformational changes. The latter mutation also promoted dimerization of the protein. Our results show that EF-hand 1 in wild-type GCAP-1 is critical for providing the correct conformation for target activation. [source]