| |||
Calcium Ions (calcium + ion)
Kinds of Calcium Ions Terms modified by Calcium Ions Selected AbstractsRelationship Between Fragmentation of Myofibrils and Liberation of Phospholipids from Z-Disks Induced by Calcium Ions at 0.1 mM: Mechanism of Tenderization of Pork and Beef during Postmortem AgingJOURNAL OF FOOD SCIENCE, Issue 9 2003K. SHIMADA ABSTRACT We studied the myofibril fragmentation using porcine and bovine myofibrils to determine the mechanism by which myofibrils are fragmented during postmortem aging of meat. Both myofibril fragmentation and liberation of phospholipids from Z-disks were maximally induced by calcium ions at 0.1 mM. These phenomena showed identical dependencies on pH and temperature in the presence of calcium ions at 0.1 mM. All phospholipids in Z-disks, except for lysophosphatidylethanolamine, had affinity for calcium ions. Therefore, we concluded that liberation of calcium-phospholipid compounds from Z-disks causes weakening of the Z-disk structure, resulting in the myofibril fragmentation during postmortem aging of meat. [source] Role of n-type voltage-dependent calcium channels in autoimmune optic neuritis,ANNALS OF NEUROLOGY, Issue 1 2009Ivana Gadjanski PhD Objective The aim of this study was to investigate the role of voltage-dependent calcium channels (VDCCs) in axon degeneration during autoimmune optic neuritis. Methods Calcium ion (Ca2+) influx into the optic nerve (ON) through VDCCs was investigated in a rat model of optic neuritis using manganese-enhanced magnetic resonance imaging and in vivo calcium imaging. After having identified the most relevant channel subtype (N-type VDCCs), we correlated immunohistochemistry of channel expression with ON histopathology. In the confirmatory part of this work, we performed a treatment study using ,-conotoxin GVIA, an N-type specific blocker. Results We observed that pathological Ca2+ influx into ONs during optic neuritis is mediated via N-type VDCCs. By analyzing the expression of VDCCs in the inflamed ONs, we detected an upregulation of ,1B, the pore-forming subunit of N-type VDCCs, in demyelinated axons. However, high expression levels were also found on macrophages/activated microglia, and lower levels were detected on astrocytes. The relevance of N-type VDCCs for inflammation-induced axonal degeneration and the severity of optic neuritis was corroborated by treatment with ,-conotoxin GVIA. This blocker led to decreased axon and myelin degeneration in the ONs together with a reduced number of macrophages/activated microglia. These protective effects were confirmed by analyzing the spinal cords of the same animals. Interpretation We conclude that N-type VDCCs play an important role in inflammation-induced axon degeneration via two mechanisms: First, they directly mediate toxic Ca2+ influx into the axons; and second, they contribute to macrophage/microglia function, thereby promoting secondary axonal damage. Ann Neurol 2009;66:81,93 [source] Calcium homeostasis and signaling in yeast cells and cardiac myocytesFEMS YEAST RESEARCH, Issue 8 2009Jiangjun Cui Abstract Calcium ions are the most ubiquitous and versatile signaling molecules in eukaryotic cells. Calcium homeostasis and signaling systems are crucial for both the normal growth of the budding yeast Saccharomyces cerevisiae and the intricate working of the mammalian heart. In this paper, we make a detailed comparison between the calcium homeostasis/signaling networks in yeast cells and those in mammalian cardiac myocytes. This comparison covers not only the components, structure and function of the networks but also includes existing knowledge on the measured and simulated network dynamics using mathematical models. Surprisingly, most of the factors known in the yeast calcium homeostasis/signaling network are conserved and operate similarly in mammalian cells, including cardiac myocytes. Moreover, the budding yeast S. cerevisiae is a simple organism that affords powerful genetic and genomic tools. Thus, exploring and understanding the calcium homeostasis/signaling system in yeast can provide a shortcut to help understand calcium homeostasis/signaling systems in mammalian cardiac myocytes. In turn, this knowledge can be used to help treat relevant human diseases such as pathological cardiac hypertrophy and heart failure. [source] Calcium ions in neuronal degenerationIUBMB LIFE, Issue 9 2008Urszula Wojda Abstract Neuronal Ca2+ homeostasis and Ca2+ signaling regulate multiple neuronal functions, including synaptic transmission, plasticity, and cell survival. Therefore disturbances in Ca2+ homeostasis can affect the well-being of the neuron in different ways and to various degrees. Ca2+ homeostasis undergoes subtle dysregulation in the physiological ageing. Products of energy metabolism accumulating with age together with oxidative stress gradually impair Ca2+ homeostasis, making neurons more vulnerable to additional stress which, in turn, can lead to neuronal degeneration. Neurodegenerative diseases related to aging, such as Alzheimer's disease, Parkinson's disease, or Huntington's disease, develop slowly and are characterized by the positive feedback between Ca2+ dyshomeostasis and the aggregation of disease-related proteins such as amyloid beta, alfa-synuclein, or huntingtin. Ca2+ dyshomeostasis escalates with time eventually leading to neuronal loss. Ca2+ dyshomeostasis in these chronic pathologies comprises mitochondrial and endoplasmic reticulum dysfunction, Ca2+ buffering impairment, glutamate excitotoxicity and alterations in Ca2+ entry routes into neurons. Similar changes have been described in a group of multifactorial diseases not related to ageing, such as epilepsy, schizophrenia, amyotrophic lateral sclerosis, or glaucoma. Dysregulation of Ca2+ homeostasis caused by HIV infection or by sudden accidents, such as brain stroke or traumatic brain injury, leads to rapid neuronal death. The differences between the distinct types of Ca2+ dyshomeostasis underlying neuronal degeneration in various types of pathologies are not clear. Questions that should be addressed concern the sequence of pathogenic events in an affected neuron and the pattern of progressive degeneration in the brain itself. Moreover, elucidation of the selective vulnerability of various types of neurons affected in the diseases described here will require identification of differences in the types of Ca2+ homeostasis and signaling among these neurons. This information will be required for improved targeting of Ca2+ homeostasis and signaling components in future therapeutic strategies, since no effective treatment is currently available to prevent neuronal degeneration in any of the pathologies described here. © 2008 IUBMB IUBMB Life, 60(9): 575,590, 2008 [source] Involvement of brain-derived neurotrophic factor (BDNF) in the functional elimination of synaptic contacts at polyinnervated neuromuscular synapses during developmentJOURNAL OF NEUROSCIENCE RESEARCH, Issue 7 2010N. Garcia Abstract We use immunohistochemistry to describe the localization of brain-derived neurotrophic factor (BDNF) and its receptors trkB and p75NTR in the neuromuscular synapses of postnatal rats (P6,P7) during the synapse elimination period. The receptor protein p75NTR is present in the nerve terminal, muscle cell and glial Schwann cell whereas BDNF and trkB proteins can be detected mainly in the pre- and postsynaptic elements. Exogenously applied BDNF (10 nM for 3 hr or 50 nM for 1 hr) increases ACh release from singly and dually innervated synapses. This effect may be specific for BDNF because the neurotrophin NT-4 (2,8 nM) does not modulate release at P6,P7. Blocking the receptors trkB and p75NTR (with K-252a and anti-p75-192-IgG, respectively) completely abolishes the potentiating effect of exogenous BDNF. In addition, exogenous BDNF transiently recruits functionally depressed silent terminals, and this effect seems to be mediated by trkB. Calcium ions, the L-type voltage-dependent calcium channels and protein kinase C are involved in BDNF-mediated nerve ending recruitment. Blocking experiments suggest that endogenous BDNF could operate through p75NTR receptors coupled to potentiate ACh release in all nerve terminals because the anti-p75-192-IgG reduces release. However, blocking the trkB receptor (K-252a) or neutralizing endogenous BDNF with the trkB-IgG fusion protein reveals a trkB-mediated release inhibition on almost mature strong endings in dual junctions. Taken together these results suggest that a BDNF-induced p75NTR -mediated ACh release potentiating mechanism and a BDNF-induced trkB-mediated release inhibitory mechanism may contribute to developmental synapse disconnection. © 2009 Wiley-Liss, Inc. [source] Protein,membrane interactions: blood clotting on nanoscale bilayersJOURNAL OF THROMBOSIS AND HAEMOSTASIS, Issue 2009J. H. MORRISSEY Summary., The clotting cascade requires the assembly of protease,cofactor complexes on membranes with exposed anionic phospholipids. Despite their importance, protein,membrane interactions in clotting remain relatively poorly understood. Calcium ions are known to induce anionic phospholipids to cluster, and we propose that clotting proteins assemble preferentially on such anionic lipid-rich microdomains. Until recently, there was no way to control the partitioning of clotting proteins into or out of specific membrane microdomains, so experimenters only knew the average contributions of phospholipids to blood clotting. The development of nanoscale membrane bilayers (Nanodiscs) has now allowed us to probe, with nanometer resolution, how local variations in phospholipid composition regulate the activity of key protease,cofactor complexes in blood clotting. Furthermore, exciting new progress in solid-state NMR and large-scale molecular dynamics simulations allow structural insights into interactions between proteins and membrane surfaces with atomic resolution. [source] Measurement of the force and torque produced in the calcium response of reactivated rat sperm flagellaCYTOSKELETON, Issue 1 2001Mark J. Moritz Abstract Rat sperm that are demembranated with Triton X-100 and reactivated with Mg-ATP show a strong mechanical response to the presence of free calcium ion. At pCa < 4, the midpiece region of the flagellum develops a strong and sustained curvature that gives the cell the overall appearance of a fishhook [Lindemann and Goltz, 1988: Cell Motil. Cytoskeleton 10:420,431]. In the present study, the force and torque that maintain the calcium-induced hook have been examined quantitatively. In addition, full-length and shortened flagella were manipulated to evaluate the plasticity of the hooks and determined the critical length necessary for maintaining the curvature. The hooks were found to be highly resilient, returning to their original configuration (>95%) after being straightened and released. The results from manipulating the shortened flagella suggest that the force holding the hook in the curved configuration is generated in the basal 60 ,m of the flagellum. The force required to straighten the calcium-induced hooks was measured with force-calibrated glass microprobes, and the bending torque was calculated from the measured force. The force and torque required to straighten the flagellum were found to be proportional to the change in curvature of the hooked region of the flagellum, suggesting an elastic-like behavior. The average torque to open the hooks to a straight position was 2.6 (±1.4) × 10 -7 dyne × cm (2.6 × 10 -14 N × m) and the apparent stiffness was 4.3 (±1.3) × 10 -10 dyne × cm2 (4.3 × 10 -19 N × m2). The stiffness of the hook was determined to be approximately one quarter the rigor stiffness of a rat sperm flagellum measured under comparable conditions. Cell Motil. Cytoskeleton 49:33,40, 2001. © 2001 Wiley-Liss, Inc. [source] The effect of short chain fatty acids on calcium flux rates across isolated rumen epithelium of hay-fed and concentrate-fed sheepJOURNAL OF ANIMAL PHYSIOLOGY AND NUTRITION, Issue 1-2 2003S. K. Uppal Summary The present in vitro experiment was conducted to study the effect of two concentrations of short chain fatty acids [SCFA: 0 (control), 40 and 100 mmol/l in the buffer solution on mucosal side] on calcium ion (Ca2+) transport across the isolated rumen epithelium of two groups of sheep. One group was subjected to hay ad libitum, whereas the other to concentrate feed (800 g per day in equal portion at 7.00 and 15.00 hours and hay ad lib). The conventional Ussing chamber method was used for measuring the Ca2+ transport rates (45Ca), short-circuit current (Isc) and tissue conductance (GT) of isolated rumen epithelium. The SCFA significantly increased Isc of the epithelia of concentrate-fed sheep. In both hay- and concentrate-fed animals, 45Ca flux rates showed an almost linear increase in net flux rate () with rising concentrations of SCFA, as a result of a combined effect of a large increase in mucosal-to-serosal flux rates () and an almost linear, but small, decrease in serosal-to-mucosal flux rate (). In concentrate-fed sheep and were significantly higher in tissues incubated with SCFA compared with hay-fed animals. The well-known adaptable morphological and functional changes in the rumen epithelium attributable to concentrate feeding obviously include Ca2+ transport; such feeding therefore may be considered as a possible prophylactic measure in the prevention of milk fever. [source] New enzymatic assay for serum urea nitrogen using urea amidolyaseJOURNAL OF CLINICAL LABORATORY ANALYSIS, Issue 2 2003Shigeki Kimura Abstract We established an enzymatic assay for measurement of serum urea nitrogen using urea amidolyase (EC 3.5.1.45) from yeast species. The method is based on hydrolysis of urea by the enzyme. In this assay, we eliminated endogenous ammonium ion by use of glutamate dehydrogenase (EC 1.4.1.4). Then in the presence of urea amido-lyase, ATP, bicarbonate, magnesium, and potassium ions, ammonium ion was produced proportionally to urea concentration in serum. The concentra-tion of ammonium ion formed was determined by adding GLDH to produce NADP+ in the presence of 2-oxoglutarate and NADPH. We then monitored the change of absorbance at 340 nm. The inhibitory effect of calcium ion on this assay was eliminated by adding glyco-letherdiamine-N, N, N,, N,-tetraacetic acid to the reaction system. The with-in-assay coefficient of variations (CVs) of the present method were 1.80,3.76% (n = 10) at 2.8,19.0 mmol/L, respectively. The day-to-day CVs were 2.23,4.59%. Analytical recovery was 92,115%. The presence of ascorbic acid, bilirubin, hemoglobin, lipemic material, ammo-nium ion, or calcium ion did not affect this assay system. The correlation be-tween values obtained with the present method (y) and those by another enzy-matic method (x) was 0.997 (y = 1.02x , 0.10 mmol/L, Sy/x = 0.841, n = 100), with a mean difference of ,0.18 ± 0.86 mmol/L [(values by reference method , that of present method) ± SD] using the Bland-Altman technique. J. Clin. Lab. Anal. 17:52,56, 2003. © 2003 Wiley-Liss, Inc. [source] Blockade by ferrous iron of Ca2+ influx through N -methyl- d -aspartate receptor channels in immature cultured rat cortical neuronsJOURNAL OF NEUROCHEMISTRY, Issue 1 2002Noritaka Nakamichi Abstract Rat cortical neurons cultured for 3 days in vitro were loaded with the fluorescent indicator fluo-3 for assessment of intracellular free calcium ion (Ca2+) concentrations with the aid of a confocal laser-scanning microscope. In the absence of added MgCl2, the addition of NMDA induced a rapid but sustained increase in the number of fluorescent neurons in a concentration-dependent manner at a concentration range of 1,100 µm with the increase by KCl being transient. The addition of FeCl2, but not FeCl3, markedly inhibited the increase by NMDA in a reversible manner at concentrations of 10,200 µm, without affecting that by KCl. Extensive analyses revealed clear differentiation between inhibitions by ferrous iron and other channel blockers known to date. The inhibition by FeCl2 was completely prevented by the addition of two different iron chelators. Exposure to NMDA alone did not lead to cell death in immature cultured neurons, however, while further addition of FeCl2 invariably induced neuronal cell death 24 h after exposure. These results give support to our previous proposal that NMDA receptor complex may contain a novel site sensitive to blockade by ferrous iron in rat brain. [source] Nucleation of Hydroxyapatite Crystal through Chemical Interaction with CollagenJOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 11 2000Sang-Hoon Rhee The nucleation of hydroxyapatite (HAp) crystal through chemical interaction with collagen was investigated. A collagen membrane was soaked in a supersaturated simulated body fluid (1.5 SBF) solution with ion concentrations at 1.5 times that of normal simulated body fluid (1.0 SBF). A few carbonate-containing HAp crystals were formed mostly on the edge-side of the collagen membrane after 4 weeks. In the Fourier-transform infrared spectometry (FTIR) results, the carboxylate band of the collagen membrane showed red chemical shifts after the formation of HAp crystals, which coincided well with the decrease of the calculated bond orders of the carboxylate group when chelated with a calcium ion, which emulated the first-step nucleation of HAp crystal on the carboxylate group of collagen. The result implies that the binding of a calcium ion to the carboxylate group of collagen is one of the key factors for the nucleation of HAp crystals in a 1.5 SBF solution. [source] Expression of intracellular calcium signalling genes in cattle skin during tick infestationPARASITE IMMUNOLOGY, Issue 4 2009N. BAGNALL SUMMARY It is widely acknowledged that changes in intracellular calcium ion (Ca2+) concentration provide dynamic signals that control a plethora of cellular processes, including triggering and mediating host defence mechanisms. In this study, quantitative real-time PCR was used to analyse gene expression of 14 Ca2+ signalling proteins in skin obtained from high tick-resistant (HR) and low tick-resistant (LR) cattle following artificial challenge with cattle tick (Rhipicephalus (Boophilus) microplus). Up-regulation of numerous genes was observed in both HR and LR skin following tick challenge, however substantially higher transcription activation was found in HR tissue. The elevated expression in HR skin of specific Ca2+ signalling genes such as AHNAK, CASQ, IL2, NFAT2CIP and PLCG1 may be related to host resistance. Our data suggest that Ca2+ and its associated proteins might play an important role in host response to ticks and that further investigation is warranted. [source] Structural studies of human alkaline phosphatase in complex with strontium: Implication for its secondary effect in bonesPROTEIN SCIENCE, Issue 7 2006Paola Llinas Abstract Strontium is used in the treatment of osteoporosis as a ranelate compound, and in the treatment of painful scattered bone metastases as isotope. At very high doses and in certain conditions, it can lead to osteomalacia characterized by impairment of bone mineralization. The osteomalacia symptoms resemble those of hypophosphatasia, a rare inherited disorder associated with mutations in the gene encoding for tissue-nonspecific alkaline phosphatase (TNAP). Human alkaline phosphatases have four metal binding sites,two for zinc, one for magnesium, and one for calcium ion,that can be substituted by strontium. Here we present the crystal structure of strontium-substituted human placental alkaline phosphatase (PLAP), a related isozyme of TNAP, in which such replacement can have important physiological implications. The structure shows that strontium substitutes the calcium ion with concomitant modification of the metal coordination. The use of the flexible and polarizable force-field TCPEp (topological and classical polarization effects for proteins) predicts that calcium or strontium has similar interaction energies at the calcium-binding site of PLAP. Since calcium helps stabilize a large area that includes loops 210,228 and 250,297, its substitution by strontium could affect the stability of this region. Energy calculations suggest that only at high doses of strontium, comparable to those found for calcium, can strontium substitute for calcium. Since osteomalacia is observed after ingestion of high doses of strontium, alkaline phosphatase is likely to be one of the targets of strontium, and thus this enzyme might be involved in this disease. [source] Cofactor effects on the protein folding reaction: Acceleration of ,-lactalbumin refolding by metal ionsPROTEIN SCIENCE, Issue 4 2006Natalia A. Bushmarina Abstract About 30% of proteins require cofactors for their proper folding. The effects of cofactors on the folding reaction have been investigated with ,-lactalbumin as a model protein and metal ions as cofactors. Metal ions accelerate the refolding of ,-lactalbumin by lessening the energy barrier between the molten globule state and the transition state, mainly by decreasing the difference of entropy between the two states. These effects are linked to metal ion binding to the protein in the native state. Hence, relationships between the metal affinities for the intermediate states and those for the native state are observed. Some residual specificity for the calcium ion is still observed in the molten globule state, this specificity getting closer in the transition state to that of the native state. The comparison between kinetic and steady-state data in association with the , value method indicates the binding of the metal ions on the unfolded state of ,-lactalbumin. Altogether, these results provide insight into cofactor effects on protein folding. They also suggest new possibilities to investigate the presence of residual native structures in the unfolded state of protein and the effects of such structures on the protein folding reaction and on protein stability. [source] All three Ca2+ -binding loops of photoproteins bind calcium ions: The crystal structures of calcium-loaded apo-aequorin and apo-obelinPROTEIN SCIENCE, Issue 3 2005Lu Deng HLH, helix,loop,helix; HSQC, heteronuclear single quantum coherence; RMSD, root mean square deviation; SAD, single wavelength anomalous dispersion Abstract The crystal structures of calcium-loaded apoaequorin and apo-obelin have been determined at resolutions 1.7 Å and 2.2 Å, respectively. A calcium ion is observed in each of the three EF-hand loops that have the canonical calcium-binding sequence, and each is coordinated in the characteristic pentagonal bipyramidal configuration. The calcium-loaded apo-proteins retain the same compact scaffold and overall fold as the unreacted photoproteins containing the bound substrate, 2-hydroperoxycoelenterazine, and also the same as the Ca2+ -discharged obelin bound with the product, coelenteramide. Nevertheless, there are easily discerned shifts in both helix and loop regions, and the shifts are not the same between the two proteins. It is suggested that these subtle shifts are the basis of the ability of these photoproteins to sense Ca2+ concentration transients and to produce their bioluminescence response on the millisecond timescale. A mechanism of intrastructural transmission of the calcium signal is proposed. [source] Collectin structure: A reviewPROTEIN SCIENCE, Issue 9 2000Kjell Håkansson Abstract Colleetins are animal calcium dependent lectins that target the carbohydrate structures on invading pathogens, resulting in the agglutination and enhanced clearance of the microorganism. These proteins form trimers that may assemble into larger oligomers. Each polypeptide chain consists of four regions: a relatively short N-terminal region, a collagen like region, an ,-helical coiled-coil, and the lectin domain. Only primary structure data are available for the N-terminal region, while the most important features of the collagen-like region can be derived from its homology with collagen. The structures of the ,-helical coiled-coil and the lectin domain are known from crystallographic studies of mannan binding protein (MBP) and lung surfactant protein D (SP-D). Carbohydrate binding has been structurally characterized in several complexes between MBP and carbohydrate; all indicate that the major interaction between carbohydrate and collectin is the binding of two adjacent carbohydrate hydroxyl group to a collectin calcium ion. In addition, these hydroxyl groups hydrogen bond to some of the calcium amino acid ligands. While each collectin trimer contains three such carbohydrate binding sites, deviation from the overall threefold symmetry has been demonstrated for SP-D, which may influence its binding properties. The protein surface between the three binding sites is positively charged in both MBP and SP-D. [source] Extracellular signal-regulated kinase (ERK) activation in chicken heterophils stimulated with phorbol 12-myristate 13-acetate (PMA), Formyl-methionylleucyl-phenylalanine (fMLP) and lipopolysaccharide (LPS)ANIMAL SCIENCE JOURNAL, Issue 5 2009GERILECHAOGETU ABSTRACT The signaling pathways leading to the activation of extracellular signal-regulated kinase (ERK) by phorbol 12-myristate 13-acetate (PMA), formyl-methionylleucyl-phenylalanine (fMLP) and lipopolysaccharide (LPS) in chicken heterophils were examined. To determine the mechanism of ERK's activation and its relation with the influx of calcium ions, heterophils were stimulated by PMA, fMLP and LPS. ERK was not activated by fMLP. LPS- and PMA-stimulated activation of ERK, based on Western blotting with antibodies against the phosphorylated form of ERK, was attenuated by the pretreatment of cells with the intracellular calcium chelator BAPTA/AM (1,2-bis (o-aminophenoxy) ethane-N,N,N,,N,-tetraacetic acid) but not with the extracellular calcium chelator EGTA (glycol-bis(2-aminoethylether)-N,N,N,,N,-tetraacetic acid). Exposure of cells to the protein kinase C (PKC) inhibitor GF109203X inhibited the LPS- and PMA-stimulated phosphorylation of ERK in a concentration-dependent manner. The LPS-stimulated phosphorylation was inhibited by pretreatment with the phospholipase C (PLC) inhibitor U73122 but not the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002. These results indicate that the LPS-induced phosphorylation of ERK in the chicken heterophils is mediated by PLC, PKC and intracellular calcium, and the PMA-stimulated phosphorylation is dependent on intracellular calcium ion and PKC. [source] Structural and functional role of water molecules in bovine pancreatic phospholipase A2: a data-mining approachACTA CRYSTALLOGRAPHICA SECTION D, Issue 1 2009Shankar Prasad Kanaujia The water molecules in 25 (21 high-resolution and four atomic resolution) crystal structures of bovine pancreatic phospholipase A2 have been analyzed in order to identify the invariant water molecules and their possible roles. A total of 24 water molecules have been identified that are invariant in all 25 crystal structures examined. These include the catalytic water molecule, which is directly involved in the enzyme mechanism, and the conserved structural water molecule, which stabilizes the extended hydrogen-bonding network of the active site. Furthermore, many other water molecules stabilize the structure, whilst a few have been found to maintain the active-site geometry and provide coordination to the functionally important calcium ion. The invariant water molecules have been carefully examined and their possible roles in the structure and/or function are discussed. Molecular-dynamics studies of all 25 crystal structures have also been carried out and the results provide a good explanation of and support the findings obtained from the crystal structures. [source] Structures and molecular-dynamics studies of three active-site mutants of bovine pancreatic phospholipase A2ACTA CRYSTALLOGRAPHICA SECTION D, Issue 10 2008Shankar Prasad Kanaujia Phospholipase A2 hydrolyzes phospholipids at the sn -2 position to cleave the fatty-acid ester bond of l -glycerophospholipids. The catalytic dyad (Asp99 and His48) along with a nucleophilic water molecule is responsible for enzyme hydrolysis. Furthermore, the residue Asp49 in the calcium-binding loop is essential for controlling the binding of the calcium ion and the catalytic action of phospholipase A2. To elucidate the structural role of His48 and Asp49, the crystal structures of three active-site single mutants H48N, D49N and D49K have been determined at 1.9,Å resolution. Although the catalytically important calcium ion is present in the H48N mutant, the crystal structure shows that proton transfer is not possible from the catalytic water to the mutated residue. In the case of the Asp49 mutants, no calcium ion was found in the active site. However, the tertiary structures of the three active-site mutants are similar to that of the trigonal recombinant enzyme. Molecular-dynamics simulation studies provide a good explanation for the crystallographic results. [source] Structure of a calcium-deficient form of influenza virus neuraminidase: implications for substrate bindingACTA CRYSTALLOGRAPHICA SECTION D, Issue 9 2006Brian J. Smith The X-ray structure of influenza virus neuraminidase (NA) isolated from whale, subtype N9, has been determined at 2.2,Å resolution and contains a tetrameric protein in the asymmetric unit. In structures of NA determined previously, a calcium ion is observed to coordinate amino acids near the substrate-binding site. In three of the NA monomers determined here this calcium is absent, resulting in structural alterations near the substrate-binding site. These changes affect the conformation of residues that participate in several key interactions between the enzyme and substrate and provide at a molecular level the basis of the structural and functional role of calcium in substrate and inhibitor binding. Several sulfate ions were identified in complex with the protein. These are located in the active site, occupying the space reserved for the substrate (sialic acid) carboxylate, and in positions leading away from the substrate-binding site. These sites offer a new opportunity for the design of inhibitors of influenza virus NA. [source] Optimization of an Iron Intercalated Montmorillonite Preparation for the Removal of Arsenic at Low Concentrations,ENGINEERING IN LIFE SCIENCES (ELECTRONIC), Issue 1 2007D. Masih Abstract A series of iron intercalated montmorillonites (Fe-Monts) were prepared using (i) ion exchange of native sodium and calcium ions with iron ions, (ii) base hydrolysis of inserted iron ions in montmorillonite suspension, and (iii) insertion of pre-hydrolyzed iron colloid in montmorillonite. The materials were characterized by X-ray diffraction and gas adsorption-desorption techniques. The basal d(001)-spacing and BET specific surface area increased after the intercalation of iron species in montmorillonite. Local iron structure studied by X-ray absorption fine structure (XAFS) spectroscopy showed an unsaturation of the Fe···Fe coordination number (N 2.5) of the intercalated iron species as compared to the bulk iron oxyhydroxides (N 6). The Fe-Monts were employed for arsenic removal from aqueous solutions at low concentration (0.2,16 mg/L). Among the Fe-Monts, the one prepared by the hydrolysis of inserted iron ions, was the best in performance. The saturation adsorption amount of the optimized iron-montmorillonite was 4 and 28 times higher for the removal of arsenite and arsenate, respectively, as compared to bulk iron oxyhydroxide (goethite). Compared with bulk iron oxyhydroxide, the Fe-Monts were superior for arsenate uptake and comparable for arsenite. In addition, arsenite adsorbed on the Fe-Monts was found to be oxidized to arsenate based on XAFS spectroscopy. [source] Synaptic stimulation of nicotinic receptors in rat sympathetic ganglia is followed by slow activation of postsynaptic potassium or chloride conductancesEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 8 2000Oscar Sacchi Abstract Two slow currents have been described in rat sympathetic neurons during and after tetanization of the whole preganglionic input. Both effects are mediated by nicotinic receptors activated by native acetylcholine (ACh). A first current, indicated as IAHPsyn, is calcium dependent and voltage independent, and is consistent with an IAHP -type potassium current sustained by calcium ions accompanying the nicotinic synaptic current. The conductance activated by a standard synaptic train was ,,3.6 nS per neuron; it was detected in isolation in 14 out of a 52-neuron sample. A novel current, IADPsyn, was described in 42/52 of the sample as a post-tetanic inward current, which increased in amplitude with increasing membrane potential negativity and exhibited a null-point close to the holding potential and the cell momentary chloride equilibrium potential. IADPsyn developed during synaptic stimulation and decayed thereafter according to a single exponential (mean ,,= 148.5 ms) in 18 neurons or according to a two-exponential time course (, = 51.8 and 364.9 ms, respectively) in 19 different neurons. The mean peak conductance activated was ,,20 nS per neuron. IADPsyn was calcium independent, it was affected by internal and external chloride concentration, but was insensitive to specific blockers (anthracene-9-carboxylic acid, 9AC) of the chloride channels open in the resting neuron. It is suggested that gADPsyn represents a specific chloride conductance activatable by intense nicotinic stimulation; in some neurons it is even associated with single excitatory postsynaptic potentials (EPSCs). Both IAHP and IADPsyn are apparently devoted to reduce neuronal excitability during and after intense synaptic stimulation. [source] Insights into the structure of plant ,-type phospholipase DFEBS JOURNAL, Issue 10 2007Susanne Stumpe Phospholipases D play an important role in the regulation of cellular processes in plants and mammals. Moreover, they are an essential tool in the synthesis of phospholipids and phospholipid analogs. Knowledge of phospholipase D structures, however, is widely restricted to sequence data. The only known tertiary structure of a microbial phospholipase D cannot be generalized to eukaryotic phospholipases D. In this study, the isoenzyme form of phospholipase D from white cabbage (PLD,2), which is the most widely used plant phospholipase D in biocatalytic applications, has been characterized by small-angle X-ray scattering, UV-absorption, CD and fluorescence spectroscopy to yield the first insights into its secondary and tertiary structure. The structural model derived from small-angle X-ray scattering measurements reveals a barrel-shaped monomer with loosely structured tops. The far-UV CD-spectroscopic data indicate the presence of ,-helical as well as ,-structural elements, with the latter being dominant. The fluorescence and near-UV CD spectra point to tight packing of the aromatic residues in the core of the protein. From the near-UV CD signals and activity data as a function of the calcium ion concentration, two binding events characterized by dissociation constants in the ranges of 0.1 mm and 10,20 mm can be confirmed. The stability of PLD,2 proved to be substantially reduced in the presence of calcium ions, with salt-induced aggregation being the main reason for irreversible inactivation. [source] The calpain 1,,-actinin interactionFEBS JOURNAL, Issue 23 2003Resting complex between the calcium-dependant protease, its target in cytoskeleton Calpain 1 behaviour toward cytoskeletal targets was investigated using two ,-actinin isoforms from smooth and skeletal muscles. These two isoforms which are, respectively, sensitive and resistant to calpain cleavage, interact with the protease when using in vitro binding assays. The stability of the complexes in EGTA [Kd(,Ca2+) = 0.5 ± 0.1 µm] was improved in the presence of 1 mm calcium ions [Kd(+Ca2+) = 0.05 ± 0.01 µm]. Location of the binding structures shows that the C-terminal domain of ,-actinin and each calpain subunit, 28 and 80 kDa, participates in the interaction. In particular, the autolysed calpain form (76/18) affords a similar binding compared to the 80/28 intact enzyme, with an identified binding site in the catalytic subunit, located in the C-terminal region of the chain (domain III,IV). The in vivo colocalization of calpain 1 and ,-actinin was shown to be likely in the presence of calcium, when permeabilized muscle fibres were supplemented by exogenous calpain 1 and the presence of calpain 1 in Z-line cores was shown by gold-labelled antibodies. The demonstration of such a colocalization was brought by coimmunoprecipitation experiments of calpain 1 and ,-actinin from C2.7 myogenic cells. We propose that calpain 1 interacts in a resting state with cytoskeletal targets, and that this binding is strengthened in pathological conditions, such as ischaemia and dystrophies, associated with high calcium concentrations. [source] Purification, characterization and subunits identification of the diol dehydratase of Lactobacillus collinoidesFEBS JOURNAL, Issue 22 2002Nicolas Sauvageot The three genes pduCDE encoding the diol dehydratase of Lactobacillus collinoides, have been cloned for overexpression in the pQE30 vector. Although the three subunits of the protein were highly induced, no activity was detected in cell extracts. The enzyme was therefore purified to near homogeneity by ammonium sulfate precipitation and gel filtration chromatography. In fractions showing diol dehydratase activity, three main bands were present after SDS/PAGE with molecular masses of 63, 28 and 22 kDa, respectively. They were identified by mass spectrometry to correspond to the large, medium and small subunits of the dehydratase encoded by the pduC, pduD and pduE genes, respectively. The molecular mass of the native complex was estimated to 207 kDa in accordance with the calculated molecular masses deduced from the pduC, D, E genes (61, 24.7 and 19,1 kDa, respectively) and a ,2,2,2 composition. The Km for the three main substrates were 1.6 mm for 1,2-propanediol, 5.5 mm for 1,2-ethanediol and 8.3 mm for glycerol. The enzyme required the adenosylcobalamin coenzyme for catalytic activity and the Km for the cofactor was 8 µm. Inactivation of the enzyme was observed by both glycerol and cyanocobalamin. The optimal reaction conditions of the enzyme were pH 8.75 and 37 °C. Activity was inhibited by sodium and calcium ions and to a lesser extent by magnesium. A fourth band at 59 kDa copurified with the diol dehydratase and was identified as the propionaldehyde dehydrogenase enzyme, another protein involved in the 1,2-propanediol metabolism pathway. [source] Interaction of bovine coagulation factor X and its glutamic-acid-containing fragments with phospholipid membranesFEBS JOURNAL, Issue 12 2002A surface plasmon resonance study The interaction of blood coagulation factor X and its Gla-containing fragments with negatively charged phospholipid membranes composed of 25 mol% phosphatidylserine (PtdSer) and 75 mol% phosphatidylcholine (PtdCho) was studied by surface plasmon resonance. The binding to 100 mol% PtdCho membranes was negligible. The calcium dependence in the membrane binding was evaluated for intact bovine factor X (factor X) and the fragment containing the Gla-domain and the N-terminal EGF (epidermal growth factor)-like domain, Gla,EGFN, from factor X. Both proteins show the same calcium dependence in the membrane binding. Calcium binding is cooperative and half-maximum binding was observed at 1.5 mm and 1.4 mm, with the best fit to the experimental data with three cooperatively bound calcium ions for both the intact protein and the fragment. The dissociation constant (Kd) for binding to membranes containing 25 mol% PtdSer decreased from 4.6 µm for the isolated Gla-domain to 1 µm for the fragments Gla,EGFN and Gla,EGFNC (the Gla-domain and both EGF-like domains) fragments and to 40 nm for the entire protein as zymogen, activated enzyme or in the active-site inhibited form. Analysis of the kinetics of adsorption and desorption confirmed the equilibrium binding data. [source] Divalent metal cation binding properties of human prothymosin ,FEBS JOURNAL, Issue 15 2000Nina V. Chichkova The divalent cation binding properties of human prothymosin ,, an abundant nuclear protein involved in cell proliferation, were evaluated. By using prothymosin , retardation on a weak cation chelating resin charged with various divalent cations, specific binding of Zn2+ ions by prothymosin , was observed. This finding was further confirmed by the equilibrium dialysis analysis which demonstrated that, within the micromolar range of Zn2+ concentrations, prothymosin , could bind up to three zinc ions in the presence of 100 mm NaCl and up to 13 zinc ions in the absence of NaCl. Equilibrium dialysis analysis also revealed that prothymosin , could bind Ca2+, although the parameters of Ca2+ binding by prothymosin , were less pronounced than those of Zn2+ binding in terms of the number of metal ions bound, the KD values, and the resistance of the bound metal ions to 100 mm NaCl. The effects of Zn2+ and Ca2+ on the interaction of prothymosin , with its putative partners, Rev of HIV type 1 and histone H1, were examined. We demonstrated that Rev binds prothymosin ,, and that prothymosin , binding to Rev but not to histone H1 was significantly enhanced in the presence of zinc and calcium ions. Our data suggest that the modes of prothymosin , interaction with Rev and histone H1 are distinct and that the observed zinc and calcium-binding properties of prothymosin , might be functionally relevant. [source] Biomineralization: Mussel-Inspired Polydopamine Coating as a Universal Route to Hydroxyapatite Crystallization (Adv. Funct.ADVANCED FUNCTIONAL MATERIALS, Issue 13 2010Mater. A universal biomineralization approach that can integrate hydroxyapatites on virtually any type and shape of substrate is presented. H. Lee, C. B. Park, and co-workers show on page 2132 that polydopamine, a catecholamine surface modifier inspired by adhesive proteins found in mussels, enriches calcium ions at the interface, facilitating the formation of biomimetic hydroxyapatite crystals. [source] Mussel-Inspired Polydopamine Coating as a Universal Route to Hydroxyapatite CrystallizationADVANCED FUNCTIONAL MATERIALS, Issue 13 2010Jungki Ryu Abstract Bone tissue is a complex biocomposite material with a variety of organic (e.g., proteins, cells) and inorganic (e.g., hydroxyapatite crystals) components hierarchically organized with nano/microscale precision. Based on the understanding of such hierarchical organization of bone tissue and its unique mechanical properties, efforts are being made to mimic these organic,inorganic hybrid biocomposites. A key factor for the successful designing of complex, hybrid biomaterials is the facilitation and control of adhesion at the interfaces, as many current synthetic biomaterials are inert, lacking interfacial bioactivity. In this regard, researchers have focused on controlling the interface by surface modifications, but the development of a simple, unified way to biofunctionalize diverse organic and inorganic materials remains a critical challenge. Here, a universal biomineralization route, called polydopamine-assisted hydroxyapatite formation (pHAF), that can be applied to virtually any type and morphology of scaffold materials is demonstrated. Inspired by the adhesion mechanism of mussels, the pHAF method can readily integrate hydroxyapatites on ceramics, noble metals, semiconductors, and synthetic polymers, irrespective of their size and morphology (e.g., porosity and shape). Surface-anchored catecholamine moieties in polydopamine enriches the interface with calcium ions, facilitating the formation of hydroxyapatite crystals that are aligned to the c -axes, parallel to the polydopamine layer as observed in natural hydroxyapatites in mineralized tissues. This universal surface biomineralization can be an innovative foundation for future tissue engineering. [source] Electroaddressing of Cell Populations by Co-Deposition with Calcium Alginate HydrogelsADVANCED FUNCTIONAL MATERIALS, Issue 13 2009Xiao-Wen Shi Abstract Electroaddressing of biological components at specific device addresses is attractive because it enlists the capabilities of electronics to provide spatiotemporally controlled electrical signals. Here, the electrodeposition of calcium alginate hydrogels at specific electrode addresses is reported. The method employs the low pH generated at the anode to locally solubilize calcium ions from insoluble calcium carbonate. The solubilized Ca2+ can then bind alginate to induce this polysaccharide to undergo a localized sol-gel transition. Calcium alginate gel formation is shown to be spatially controlled in the normal and lateral dimensions. The deposition method is sufficiently benign that it can be used to entrap the bacteria E. coli. The entrapped cells are able to grow and respond to chemical inducers in their environment. Also, the entrapped cells can be liberated from the gel network by adding sodium citrate that can compete with alginate for Ca2+ binding. The capabilities of calcium alginate electrodeposition is illustrated by entrapping reporter cells that can recognize the quorum sensing autoinducer 2 (AI-2) signaling molecule. These reporter cells were observed to recognize and respond to AI-2 generated from an external bacterial population. Thus, calcium alginate electrodeposition provides a programmable method for the spatiotemporally controllable assembly of cell populations for cell-based biosensing and for studying cell-cell signaling. [source] |