Calcium Bioavailability (calcium + bioavailability)

Distribution by Scientific Domains


Selected Abstracts


A Soybean Cultivar Lacking Lipoxygenase 2 and 3 Has Similar Calcium Bioavailability to a Commercial Variety Despite Higher Calcium Absorption Inhibitors

JOURNAL OF FOOD SCIENCE, Issue 3 2008
H.S.D. Martino
ABSTRACT:, The aim of this study was to evaluate calcium bioavailability of a new soybean variety without 2 lipoxygenases with better taste and flavor than a commercial variety containing all 3 isozymes. Using the femur 45Ca uptake method, calcium absorption from a new Brazilian variety, UFV-116, was compared to a common Brazilian variety, OCEPAR 19. Male Sprague,Dawley growing rats weighing 150 to 170 g (10/group) received test meals of whole fat soy flour prepared from UFV-116 or OCEPAR-19 seeds labeled with 10 ,Ci of 45Ca. Femurs were removed after 48 h for determination of 45Ca uptake. Calcium fractional absorption was equivalent between the 2 varieties. The higher oxalate:calcium molar ratio and the higher content of oxalate and phytate (P < 0.05) found in the UFV-116 variety did not affect calcium absorption. Therefore, the new variety is a comparable source of high bioavailable calcium. [source]


Iron and Calcium Bioavailability of Fortified Foods and Dietary Supplements

NUTRITION REVIEWS, Issue 11 2002
Susan J. Fairweather-Tait DSc
Bioavailability is a key consideration when developing strategies for preventing mineral deficiencies through improved dietary supply. Factors that affect the bioavailability of iron and calcium, forms used for fortification and supplementation, and methods used to assess bioavailability are described. Illustrations of the impact of introducing iron-fortified foods in developing and industrialized countries are given, and the alternative approach of supplementation with iron and calcium is discussed. [source]


Calcium Absorption from Commonly Consumed Vegetables in Healthy Thai Women

JOURNAL OF FOOD SCIENCE, Issue 9 2008
S. Charoenkiatkul
ABSTRACT:, The absorbability of calcium from ivy gourd, a green leafy vegetable (Coccinia grandix Voigt.) and winged bean young pods (Psophocarpus tetragonolobus [L] DC) were measured in 19 healthy adult women aged 20 to 45 y, in a 3-way, randomized-order, crossover design with an average calcium load of 100 mg and milk as the referent. The test meals were extrinsically labeled with 44Ca and given with rice as breakfast after an overnight fast. Absorption of calcium was determined on a blood sample drawn 5 h after ingestion of the test meal. Fractional calcium absorption (X± SD) was 0.391 ± 0.128 from winged beans, 0.476 ± 0.109 from ivy gourd, and 0.552 ± 0.119 from milk. The difference in fractional calcium absorption for these 2 vegetables was significant (P < 0.05) and the fractional calcium absorption from these 2 vegetables were both significantly lower than from milk. The difference was partly accounted for by the phytate, oxalate, and dietary fiber content of the vegetables. However, calcium bioavailability of these 2 vegetables, commonly consumed among Thais, was relatively good compared to milk (71% to 86% of milk) and could be generally recommended to the public as calcium sources other than milk and Brassica vegetables. [source]


A Soybean Cultivar Lacking Lipoxygenase 2 and 3 Has Similar Calcium Bioavailability to a Commercial Variety Despite Higher Calcium Absorption Inhibitors

JOURNAL OF FOOD SCIENCE, Issue 3 2008
H.S.D. Martino
ABSTRACT:, The aim of this study was to evaluate calcium bioavailability of a new soybean variety without 2 lipoxygenases with better taste and flavor than a commercial variety containing all 3 isozymes. Using the femur 45Ca uptake method, calcium absorption from a new Brazilian variety, UFV-116, was compared to a common Brazilian variety, OCEPAR 19. Male Sprague,Dawley growing rats weighing 150 to 170 g (10/group) received test meals of whole fat soy flour prepared from UFV-116 or OCEPAR-19 seeds labeled with 10 ,Ci of 45Ca. Femurs were removed after 48 h for determination of 45Ca uptake. Calcium fractional absorption was equivalent between the 2 varieties. The higher oxalate:calcium molar ratio and the higher content of oxalate and phytate (P < 0.05) found in the UFV-116 variety did not affect calcium absorption. Therefore, the new variety is a comparable source of high bioavailable calcium. [source]


Changes in calcium absorption and subsequent tissue distribution induced by Maillard reaction products: in vitro and in vivo assays,

JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, Issue 2 2006
Cristina Delgado-Andrade
Abstract The effects of Maillard reaction products (MRP) from glucose,lysine and glucose,methionine on calcium bioavailability were studied by in vivo (rats) and in vitro (Caco-2 cells) assays. Equimolar glucose/lysine and glucose/methionine mixtures (40% moisture) were heated (150 °C, 30 min) to prepare samples (GL30 and GM30, respectively). For 21 days, rats were fed a control diet (control group) or diets containing separately 3% of the heated mixtures (GL30 and GM30 groups, respectively). In the last week a calcium balance was performed, after which the animals were sacrificed and some organs and serum were removed to analyze calcium levels. A second balance was carried out throughout the experimental period to calculate global calcium retention (retained calcium during the entire 21 days). Unheated and heated samples were used for calcium transport experiments in Caco-2 cells. Food intake and final body weight were lower in the GM30 group. Calcium fecal excretion decreased and digestibility increased in this group. Accordingly, increased calcium transport in Caco-2 cells was found in the presence of the GM30 sample, when compared with the unheated sample. However, global calcium retention tended to decrease in the GM30 group, mainly owing to the lower food intake. Bone calcium concentrations decreased in the animals fed the MRP diets. The possible long-term effects of MRP intake on calcium digestibility and bone calcium should be taken into account to avoid related diseases. Copyright © 2005 Society of Chemical Industry [source]