Calcareous Grasslands (calcareous + grassland)

Distribution by Scientific Domains


Selected Abstracts


Potential of endozoochorous seed dispersal by sheep in calcareous grasslands: correlations with seed traits

APPLIED VEGETATION SCIENCE, Issue 2 2010
A.T. Kuiters
Abstract Questions: What is the potential of sheep to serve as seed dispersers via ingestion and defecation in calcareous grasslands? Is the presence of viable seeds from dung correlated with specific seed traits? Location: Calcareous grasslands, South Limburg, the Netherlands/Belgium. Methods: Dung samples (n=24) from sheep were collected between September 2006 and November 2007 from five sites with Mesobromion plant communities, and communities of Nardo-Galion saxatilis. Germinability and identity of seeds in the dung samples were ascertained from germination of seedlings under glasshouse conditions. Seed traits of species with viable seeds in dung were compared with those present in the local species pool. Results: Seventy-two plant species from 23 plant families had viable seeds in sheep dung. The plant families encountered most frequently were Gramineae and Compositae. The most abundant and frequently recorded plant species in dung samples was Urtica dioica, accounting for >80% of the total number of seeds. Mean seed density in sheep dung was 0.8 seeds g,1 dry matter. Seeds with low seed mass and a high seed longevity index were over-represented in dung. Viable seeds >2.5 mg were infrequent in the dung samples. Conclusions: We conclude that sheep are potentially important dispersers of plant species in Dutch calcareous grasslands. Although smaller seeds were relatively abundant in sheep dung, it cannot be excluded that this was mainly caused by differences in seed abundance. [source]


Respiratory carbon loss of calcareous grasslands in winter shows no effects of 4 years' CO2 enrichment

FUNCTIONAL ECOLOGY, Issue 2 2002
M. Volk
Summary 1CO2 exchange measurements in long-term CO2 -enrichment experiments suggest large net carbon gains by ecosystems during the growing season that are not accounted for by above-ground plant biomass. Considerable amounts of C might therefore be allocated below ground. 2Winter ecosystem respiration from temperate grasslands under elevated CO2 may account for the loss of a significant part of the extra C gained during the growing season. To test this hypothesis, dark respiration was assessed throughout the winter of the fourth year of CO2 enrichment in a calcareous grassland. 3Using these data, a model was parameterized to estimate whole-winter respiratory CO2 losses. From November to February, 154 9 g C m,2 were respired under elevated CO2 and 144 5 g C m,2 under ambient [CO2], with no significant difference between the CO2 treatments. 4We conclude that (i) wintertime respiration does not constitute a larger C loss from the ecosystem at elevated CO2; and (ii) the absence of respiratory responses implies no extra growing-season C inputs with month-to-year turnover times at elevated CO2. [source]


Vegetation gradients in Atlantic Europe: the use of existing phytosociological data in preliminary investigations on the potential effects of climate change on British vegetation

GLOBAL ECOLOGY, Issue 3 2000
J. C. Duckworth
Abstract 1This paper aims to demonstrate the use of available vegetation data from the phytosociological literature in preliminary analyses to generate hypotheses regarding vegetation and climate change. 2Data for over 3000 samples of calcareous grassland, mesotrophic grassland, heath and woodland vegetation were taken from the literature for a region in the west of Atlantic Europe and subjected to ordination by detrended correspondence analysis in order to identify the main gradients present. 3Climate data were obtained at a resolution of 0.5° from an existing database. The relationship between vegetation composition and climate was investigated by the correlation of the mean scores for the first two ordination axes for each 0.5° cell with the climate and location variables. 4The ordinations resulted in clear geographical gradients for calcareous grasslands, heaths and woodlands but not for mesotrophic grasslands. Significant correlations were shown between some of the vegetation gradients and the climate variables, with the strongest relationships occurring between the calcareous grassland gradients and July temperature, latitude and oceanicity. Some of the vegetation gradients were also inferred to reflect edaphic factors, management and vegetation history. 5Those gradients that were related to temperature were hypothesized to reflect the influence of a progressively warmer climate on species composition, providing a baseline for further studies on the influence of climate change on species composition. 6The validity of the literature data was assessed by the collection of an original set of field data for calcareous grasslands and the subsequent ordination of a dataset containing samples from both the literature and the field. The considerable overlap between the samples from the literature and the field suggest that literature data can be used, despite certain limitations. Such preliminary analyses, using readily available data, can thus achieve useful results, thereby saving lengthy and costly field visits. [source]


Influence of slope and aspect on long-term vegetation change in British chalk grasslands

JOURNAL OF ECOLOGY, Issue 2 2006
JONATHAN BENNIE
Summary 1,The species composition of fragmented semi-natural grasslands may change over time due to stochastic local extinction and colonization events, successional change and/or as a response to changing management or abiotic conditions. The resistance of vegetation to change may be mediated through the effects of topography (slope and aspect) on soils and microclimate. 2,To assess long-term vegetation change in British chalk grasslands, 92 plots first surveyed by F. H. Perring in 1952,53, and distributed across four climatic regions, were re-surveyed during 2001,03. Changes in vegetation since the original survey were assessed by comparing local colonization and extinction rates at the plot scale, and changes in species frequency at the subplot scale. Vegetation change was quantified using indirect ordination (Detrended Correspondence Analysis; DCA) and Ellenberg indicator values. 3,Across all four regions, there was a significant decrease in species number and a marked decline in stress-tolerant species typical of species-rich calcareous grasslands, both in terms of decreased plot occupancy and decreased frequency within occupied plots. More competitive species typical of mesotrophic grasslands had colonized plots they had not previously occupied, but had not increased significantly in frequency within occupied plots. 4,A significant increase in Ellenberg fertility values, which was highly correlated with the first DCA axis, was found across all regions. The magnitude of change of fertility and moisture values was found to decrease with angle of slope and with a topographic solar radiation index derived from slope and aspect. 5,The observed shift from calcareous grassland towards more mesotrophic grassland communities is consistent with the predicted effects of both habitat fragmentation and nutrient enrichment. It is hypothesized that chalk grassland swards on steeply sloping ground are more resistant to invasion by competitive grass species than those on flatter sites due to phosphorus limitation in shallow minerogenic rendzina soils, and that those with a southerly aspect are more resistant due to increased magnitude and frequency of drought events. [source]


Stress tolerance abilities and competitive responses in a watering and fertilization field experiment

JOURNAL OF VEGETATION SCIENCE, Issue 6 2005
P. Liancourt
Abstract Question: Do water gradients produce patterns of responses to stress and competition similar to those induced by nutrient gradients? Location: French Alps. Methods: We established a split-plot design in a calcareous grassland, with watering and fertilization as main plot treatments and competition as subplot treatment. We followed individual and competitive responses of transplants of the three potential dominant grass species: Bromus erectus, Brachypodium rupestre and Arrhenatherum elatius, in all plots during two growing seasons. Changes in natural relative abundances of the three grass species were also monitored. Results: The growth and the relative abundance of A. elatius were primarily stimulated by nutrient addition and those of B. rupestre by water addition, whereas B. erectus decreased in abundance and had a very low flexibility with enhanced resource supply. Competition intensity increased for all species with both watering and fertilization and the ranking in competitive responses did not change with treatments: A. elatius > B. rupestre > B. erectus. Conclusions: Patterns of dominance were efficiently explained by stress tolerance abilities and competitive responses for dry and poor sites, and wet and rich sites for B. erectus and A. elatius respectively, whereas competitive responses were poor predictors of dominance for B. rupestre in wet and nutrient-poor sites. Further studies are needed to assess the potential role of other processes, such as increasing competitive effect on light with increasing age as well as interference, to explain the dominance of this conservative competitor type of species in wet and nutrient-poor sites. [source]


Are Ants Useful Indicators of Restoration Success in Temperate Grasslands?

RESTORATION ECOLOGY, Issue 3 2010
Kate C. Fagan
Assessments of restoration are usually made through vegetation community surveys, leaving much of the ecosystem underexamined. Invertebrates, and ants in particular, are good candidates for restoration evaluation because they are sensitive to environmental change and are particularly important in ecosystem functioning. The considerable resources currently employed in restoring calcareous grassland on ex-arable land mean that it is important to gather as much information as possible on how ecosystems change through restoration. We compared ant communities from 40 ex-arable sites where some form of restoration work had been implemented between 2 and 60 years previously, with 40 paired reference sites of good quality calcareous grassland with no history of improvement or cultivation. A total of 11 ant species were found, but only two of these were found to be significantly different in abundance between restoration and reference sites: Myrmica sabuleti was more likely to be present in reference sites, whereas Lasius niger was more likely to be found in restoration sites. Myrmica sabuleti abundance was significantly positively correlated with age of restoration sites. The potential number of ant species found in temperate grasslands is small, limiting the information their assemblages can provide about ecosystem change. However, M. sabuleti is a good indicator species for calcareous grassland restoration success and, alongside information from the plant community, could increase the confidence with which restoration success is judged. We found the survey to be quick and simple to carry out and recommend its use. [source]


Long-term after-effects of fertilisation on the restoration of calcareous grasslands

APPLIED VEGETATION SCIENCE, Issue 2 2008
N.A.C. Smits
Question: What are the long-term implications of former fertilisation for the ecological restoration of calcareous grasslands? Location: Gerendal, Limburg, The Netherlands. Methods: In 1970, ten permanent plots were established in just abandoned agricultural calcareous grassland under a regime of annual mowing in August. From 1971 to 1979, two different fertiliser treatments were applied twice a year to a subset of the plots (artificial fertiliser with different proportions of nitrogen and phosphorus). The vegetation of the plots was recorded yearly and vegetation biomass samples were taken for peak standing crop and total amounts of nitrogen, phosphorus and potassium. Species composition and floristic diversity were analysed over the research period (1970,2006) and between the treatments, including the use of multivariate techniques (Detrended Correspondence Analysis). Results: In terms of species number, there is a clear optimum 10 to 20 years after fertilisation has been terminated. Afterwards, there is a slow decrease; no new species appear and species of more nutrient-rich conditions gradually disappear. For the fertilised plots that received a relatively high proportion of N, effects are found only in the first years, whereas, for the plots that received a relatively high proportion of P, long-term after-effects are found in species composition, peak standing crop, total amounts of phosphorus in biomass, and in soil phosphorus data. Conclusions: The effect of artificial fertiliser with a large amount of nitrogen disappears in less than ten years when mown in August, including removal of the hay. This is a promising result for restoration of N-enriched calcareous grasslands, as the applied dose of nitrogen in this experiment largely exceeds the extra input of nitrogen via atmospheric deposition. Application of fertiliser with a large amount of phosphorus, however, has effects even more than 25 years after the last addition. There are no prospects that this effect will become reduced in the near future under the current mowing management. [source]


Effects of experimental small-scale grassland fragmentation on spatial distribution, density, and persistence of ant nests

ECOLOGICAL ENTOMOLOGY, Issue 6 2003
Brigitte Braschler
Abstract., 1.,Grassland fragmentation is expected to influence the abundance of different invertebrate species to a different extent. Fragmentation-related effects are of particular importance in species that interact with many other species. 2.,The density and spatial distribution of nests of 15 ant species in experimentally fragmented calcareous grasslands at three sites in the Northern Swiss Jura mountains were examined. Fragments of different size (0.25 m2, 2.25 m2, and 20.25 m2) were isolated by a 5-m wide strip of frequently mown vegetation. Control plots of corresponding size were situated in adjacent undisturbed grassland. 3.,Three years after initiation of the experiment, ant nest density did not differ between fragments and control plots. Six years after initiation of the experiment, however, ant nest density and forager abundance were higher in large fragments than in large control plots. Ant nests tended to occur more frequently along the edge of fragments than in the core area. Persistence time of nests of the most abundant species, Lasius paralienus, tended to be shorter in fragments than in control plots. Furthermore, persistence time was longer in nests situated close to the fragment edge than in nests in the core area. 4.,Effects on nest density, edge effects on the spatial distribution of nests, and the relationships between nest density and environmental factors were more pronounced when only nests of L. paralienus were considered. The implications of these findings for plant and other invertebrate species are discussed. [source]


Respiratory carbon loss of calcareous grasslands in winter shows no effects of 4 years' CO2 enrichment

FUNCTIONAL ECOLOGY, Issue 2 2002
M. Volk
Summary 1CO2 exchange measurements in long-term CO2 -enrichment experiments suggest large net carbon gains by ecosystems during the growing season that are not accounted for by above-ground plant biomass. Considerable amounts of C might therefore be allocated below ground. 2Winter ecosystem respiration from temperate grasslands under elevated CO2 may account for the loss of a significant part of the extra C gained during the growing season. To test this hypothesis, dark respiration was assessed throughout the winter of the fourth year of CO2 enrichment in a calcareous grassland. 3Using these data, a model was parameterized to estimate whole-winter respiratory CO2 losses. From November to February, 154 9 g C m,2 were respired under elevated CO2 and 144 5 g C m,2 under ambient [CO2], with no significant difference between the CO2 treatments. 4We conclude that (i) wintertime respiration does not constitute a larger C loss from the ecosystem at elevated CO2; and (ii) the absence of respiratory responses implies no extra growing-season C inputs with month-to-year turnover times at elevated CO2. [source]


[CO2]- and density-dependent competition between grassland species

GLOBAL CHANGE BIOLOGY, Issue 11 2006
MARK Van KLEUNEN
Abstract The predicted ongoing increase of atmospheric carbon dioxide levels is considered to be one of the main threats to biodiversity due to potential changes in biotic interactions. We tested whether effects of intra- and interspecific planting density of the calcareous grassland perennials Bromus erectus and Carex flacca change in response to elevated [CO2] (600 ppm) by using factorial combinations of seven densities (0, 1, 2, 4, 8, 16, 24 tillers per 8 × 8 cm2 cell) of both species in plots with and without CO2 enrichment. Although aboveground biomass of C. flacca was increased by 54% under elevated [CO2], the combined aboveground biomass of the whole stand was not significantly increased. C. flacca tended to produce more tillers under elevated [CO2] while B. erectus produced less tillers. The positive effect of [CO2] on the number of tillers of C. flacca was strongest at high intraspecific densities. On the other hand, the negative effect of [CO2] on the number of tillers of B. erectus was not present at intermediate intraspecific planting densities. Seed production of C. flacca was more than doubled under elevated [CO2], while seed production of B. erectus was not affected. Moreover, the mass per seed of C. flacca was increased by elevated [CO2] at intermediate interspecific planting densities while the mass per seed of B. erectus was decreased by elevated [CO2] at high interspecific planting densities. Our results show that the responses of C. flacca and B. erectus to elevated [CO2] depend in a complex way on initial planting densities of both species. In other words, competition between these two model species is both [CO2]- and density dependent. On average, however, the effects of [CO2] on the individual species indicate that the composition of calcareous grasslands is likely to change under elevated [CO2] in favor of C. flacca. [source]


Vegetation gradients in Atlantic Europe: the use of existing phytosociological data in preliminary investigations on the potential effects of climate change on British vegetation

GLOBAL ECOLOGY, Issue 3 2000
J. C. Duckworth
Abstract 1This paper aims to demonstrate the use of available vegetation data from the phytosociological literature in preliminary analyses to generate hypotheses regarding vegetation and climate change. 2Data for over 3000 samples of calcareous grassland, mesotrophic grassland, heath and woodland vegetation were taken from the literature for a region in the west of Atlantic Europe and subjected to ordination by detrended correspondence analysis in order to identify the main gradients present. 3Climate data were obtained at a resolution of 0.5° from an existing database. The relationship between vegetation composition and climate was investigated by the correlation of the mean scores for the first two ordination axes for each 0.5° cell with the climate and location variables. 4The ordinations resulted in clear geographical gradients for calcareous grasslands, heaths and woodlands but not for mesotrophic grasslands. Significant correlations were shown between some of the vegetation gradients and the climate variables, with the strongest relationships occurring between the calcareous grassland gradients and July temperature, latitude and oceanicity. Some of the vegetation gradients were also inferred to reflect edaphic factors, management and vegetation history. 5Those gradients that were related to temperature were hypothesized to reflect the influence of a progressively warmer climate on species composition, providing a baseline for further studies on the influence of climate change on species composition. 6The validity of the literature data was assessed by the collection of an original set of field data for calcareous grasslands and the subsequent ordination of a dataset containing samples from both the literature and the field. The considerable overlap between the samples from the literature and the field suggest that literature data can be used, despite certain limitations. Such preliminary analyses, using readily available data, can thus achieve useful results, thereby saving lengthy and costly field visits. [source]


The resilience of calcareous and mesotrophic grasslands following disturbance

JOURNAL OF APPLIED ECOLOGY, Issue 3 2005
RACHEL A. HIRST
Summary 1Understanding habitat disturbance and recovery is vital for successful conservation management and restoration, particularly of subseral communities with high nature conservation interest and sites subject to unavoidable disturbance pressures, such as that arising from access and recreational activities. 2Grassland resilience was investigated on the Salisbury Plain Training Area (SPTA) in southern England, the largest of the UK military training areas. SPTA contains the greatest expanse of unimproved chalk grassland in north-west Europe, a habitat of particular nature conservation interest. 3Historical aerial photographs were used to identify 82 calcareous and mesotrophic grassland sites disturbed over a 50-year time period. Vegetation, soils and seed bank data were collected from each old disturbance site. Revegetation time periods following disturbance were compared, and habitat resilience following disturbance investigated using the succession of surface vegetation along the chronosequence, the combined changes of vegetation and soil chemistry, and finally vegetation and seed bank composition. 4The sampled calcareous grasslands were less resilient following disturbance than the mesotrophic grasslands, with slower colonization of bare ground and target species re-assembly. The mesotrophic grasslands typically took between 30 and 40 years to re-establish following disturbance, whereas calcareous grasslands took at least 50 years. 5Even after such long time periods, there remained subtle but significant differences between the vegetation composition of the disturbed and undisturbed swards. Perennial forb species, particularly hemicryptophytes, persisted at higher frequencies in swards disturbed 50 years ago than in undisturbed swards. 6Synthesis and applications. Prediction of habitat resilience following disturbance is dependent on which components of the system are investigated. However, data such as that presented here can help land managers understand how palimpsests of current habitat characteristics may have evolved, and how disturbance regimes may be managed in the future. It is likely that the resilience of grasslands such as those on SPTA may have been overestimated, and perceptions of habitat carrying capacity for disturbance events may require re-evaluation. [source]


Grassland diversity related to the Late Iron Age human population density

JOURNAL OF ECOLOGY, Issue 3 2007
MEELIS PÄRTEL
Summary 1Species-rich semi-natural grasslands in Europe developed during prehistoric times and have endured due to human activity. At the same time, intensive grassland management or changes in land use may result in species extinction. As a consequence, plant diversity in semi-natural calcareous grasslands may be related to both historical and current human population density. 2We hypothesize that current vascular plant diversity in semi-natural calcareous grasslands is positively correlated with the Late Iron Age (c. 800,1000 years ago) density of human settlements (indicated by Late Iron Age fortresses and villages) due to enhancement of grassland extent and species dispersal, and negatively correlated with current human population density due to habitat loss and deterioration. 3We described the size of the community vascular plant species pool, species richness per 1 m2 and the relative richness (richness divided by the size of the species pool) in 45 thin soil, calcareous (alvar) grasslands in Estonia. In addition to historical and current human population density we considered simultaneously the effects of grassland area, connectivity to other alvar grasslands, elevation above sea level (indicating grassland age), soil pH, soil N, soil P, soil depth, soil depth heterogeneity, geographical east,west gradient, precipitation and spatial autocorrelation. 4Both the size of the community species pool and the species richness are significantly correlated with the Late Iron Age human population density. In addition, species richness was unimodally related to the current human population density. The relative richness (species ,packing density') was highest in the intermediate current human population densities, indicative of moderate land-use intensity. 5Community species pool size decreased non-linearly with increasing soil N, and was highest at intermediate elevation. Small-scale richness was greater when sites were well connected and when the elevation was intermediate. Spatial autocorrelation was also significant for both species pool size and small-scale richness. 6In summary, human land-use legacy from prehistoric times is an important aspect in plant ecology, which could be an important contributor to the current variation in biodiversity. [source]


Influence of slope and aspect on long-term vegetation change in British chalk grasslands

JOURNAL OF ECOLOGY, Issue 2 2006
JONATHAN BENNIE
Summary 1,The species composition of fragmented semi-natural grasslands may change over time due to stochastic local extinction and colonization events, successional change and/or as a response to changing management or abiotic conditions. The resistance of vegetation to change may be mediated through the effects of topography (slope and aspect) on soils and microclimate. 2,To assess long-term vegetation change in British chalk grasslands, 92 plots first surveyed by F. H. Perring in 1952,53, and distributed across four climatic regions, were re-surveyed during 2001,03. Changes in vegetation since the original survey were assessed by comparing local colonization and extinction rates at the plot scale, and changes in species frequency at the subplot scale. Vegetation change was quantified using indirect ordination (Detrended Correspondence Analysis; DCA) and Ellenberg indicator values. 3,Across all four regions, there was a significant decrease in species number and a marked decline in stress-tolerant species typical of species-rich calcareous grasslands, both in terms of decreased plot occupancy and decreased frequency within occupied plots. More competitive species typical of mesotrophic grasslands had colonized plots they had not previously occupied, but had not increased significantly in frequency within occupied plots. 4,A significant increase in Ellenberg fertility values, which was highly correlated with the first DCA axis, was found across all regions. The magnitude of change of fertility and moisture values was found to decrease with angle of slope and with a topographic solar radiation index derived from slope and aspect. 5,The observed shift from calcareous grassland towards more mesotrophic grassland communities is consistent with the predicted effects of both habitat fragmentation and nutrient enrichment. It is hypothesized that chalk grassland swards on steeply sloping ground are more resistant to invasion by competitive grass species than those on flatter sites due to phosphorus limitation in shallow minerogenic rendzina soils, and that those with a southerly aspect are more resistant due to increased magnitude and frequency of drought events. [source]


Vegetation-environment relationships in Atlantic European calcareous grasslands

JOURNAL OF VEGETATION SCIENCE, Issue 1 2000
J.C. Duckworth
Hill et al. (1994); Tutin et al. (1964,1980) Abstract. The relationship between vegetation and environment was investigated for calcareous grasslands in a region in the west of Spain, France, Britain and Ireland defined by climatic criteria. Vegetation was sampled using objective methods and data collected on soils, land cover, location and management. Climate data were obtained from an available database. Examination of the first axis of vegetation variation as defined by Detrended Correspondence Analysis (DCA) showed a gradient from the Irish and British samples to those from France. The Spanish samples formed a separate group on the second axis. The species composition along the gradients is discussed. Correlations between the vegetation gradients and environmental variables were determined. The strongest correlations with the first DCA axis were for temperature, latitude, soil organic matter, grazing and land cover. The second DCA axis was highly correlated with rainfall, altitude and land cover. The third and fourth DCA axes were more difficult to interpret but appeared to be related to land cover. The results indicate that climate factors are important at this scale, but should not be considered in isolation and that factors relating to land cover and management should also be taken into account. [source]


Potential of endozoochorous seed dispersal by sheep in calcareous grasslands: correlations with seed traits

APPLIED VEGETATION SCIENCE, Issue 2 2010
A.T. Kuiters
Abstract Questions: What is the potential of sheep to serve as seed dispersers via ingestion and defecation in calcareous grasslands? Is the presence of viable seeds from dung correlated with specific seed traits? Location: Calcareous grasslands, South Limburg, the Netherlands/Belgium. Methods: Dung samples (n=24) from sheep were collected between September 2006 and November 2007 from five sites with Mesobromion plant communities, and communities of Nardo-Galion saxatilis. Germinability and identity of seeds in the dung samples were ascertained from germination of seedlings under glasshouse conditions. Seed traits of species with viable seeds in dung were compared with those present in the local species pool. Results: Seventy-two plant species from 23 plant families had viable seeds in sheep dung. The plant families encountered most frequently were Gramineae and Compositae. The most abundant and frequently recorded plant species in dung samples was Urtica dioica, accounting for >80% of the total number of seeds. Mean seed density in sheep dung was 0.8 seeds g,1 dry matter. Seeds with low seed mass and a high seed longevity index were over-represented in dung. Viable seeds >2.5 mg were infrequent in the dung samples. Conclusions: We conclude that sheep are potentially important dispersers of plant species in Dutch calcareous grasslands. Although smaller seeds were relatively abundant in sheep dung, it cannot be excluded that this was mainly caused by differences in seed abundance. [source]


Acidification of sandy grasslands , consequences for plant diversity

APPLIED VEGETATION SCIENCE, Issue 3 2009
Pål Axel Olsson
Abstract Questions: (1) Does soil acidification in calcareous sandy grasslands lead to loss of plant diversity? (2) What is the relationship between the soil content of lime and the plant availability of mineral nitrogen (N) and phosphorus (P) in sandy grasslands? Location: Sandy glaciofluvial deposits in south-eastern Sweden covered by xeric sand calcareous grasslands (EU habitat directive 6120). Methods: Soil and vegetation were investigated in most of the xeric sand calcareous grasslands in the Scania region (136 sample plots distributed over four or five major areas and about 25 different sites). Environmental variables were recorded at each plot, and soil samples were analysed for exchangeable P and N, as well as limestone content and pH. Data were analysed with regression analysis and canonical correspondence analysis. Results: Plant species richness was highest on weakly acid to slightly alkaline soil; a number of nationally red-listed species showed a similar pattern. Plant species diversity and number of red-listed species increased with slope. Where the topsoil had been acidified, limestone was rarely present above a depth of 30 cm. The presence of limestone restricts the availability of soil P, placing a major constraint on primary productivity in sandy soils. Conclusions: Acidification of sandy grasslands leads to reduced abundance of desirable species, although the overall effect is rather weak between pH 5 and pH 9. Slopes are important for high diversity in sandy grasslands. Calcareous soils cannot be restored through shallow ploughing, but deep perturbation could increase the limestone content of the topsoil and favour of target species. [source]


Long-term after-effects of fertilisation on the restoration of calcareous grasslands

APPLIED VEGETATION SCIENCE, Issue 2 2008
N.A.C. Smits
Question: What are the long-term implications of former fertilisation for the ecological restoration of calcareous grasslands? Location: Gerendal, Limburg, The Netherlands. Methods: In 1970, ten permanent plots were established in just abandoned agricultural calcareous grassland under a regime of annual mowing in August. From 1971 to 1979, two different fertiliser treatments were applied twice a year to a subset of the plots (artificial fertiliser with different proportions of nitrogen and phosphorus). The vegetation of the plots was recorded yearly and vegetation biomass samples were taken for peak standing crop and total amounts of nitrogen, phosphorus and potassium. Species composition and floristic diversity were analysed over the research period (1970,2006) and between the treatments, including the use of multivariate techniques (Detrended Correspondence Analysis). Results: In terms of species number, there is a clear optimum 10 to 20 years after fertilisation has been terminated. Afterwards, there is a slow decrease; no new species appear and species of more nutrient-rich conditions gradually disappear. For the fertilised plots that received a relatively high proportion of N, effects are found only in the first years, whereas, for the plots that received a relatively high proportion of P, long-term after-effects are found in species composition, peak standing crop, total amounts of phosphorus in biomass, and in soil phosphorus data. Conclusions: The effect of artificial fertiliser with a large amount of nitrogen disappears in less than ten years when mown in August, including removal of the hay. This is a promising result for restoration of N-enriched calcareous grasslands, as the applied dose of nitrogen in this experiment largely exceeds the extra input of nitrogen via atmospheric deposition. Application of fertiliser with a large amount of phosphorus, however, has effects even more than 25 years after the last addition. There are no prospects that this effect will become reduced in the near future under the current mowing management. [source]