Cavitation Model (cavitation + model)

Distribution by Scientific Domains


Selected Abstracts


Numerical prediction of the hydrodynamic performance of a centrifugal pump in cavitating flows

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, Issue 5 2007
Jun Li
Abstract A computational modelling for the prediction of the hydrodynamic performance of a centrifugal pump in cavitating flows is presented in this paper. The cavitation model is implemented in a viscous Reynolds-averaged Navier,Stokes solver. The cavity interface and shape are determined using an iterative procedure matching the cavity surface to a constant pressure boundary. The pressure distribution, as well as its gradient on the wall, is taken into account in updating the cavity shape iteratively. Numerical validation of the present cavitation model and algorithms is performed on different headform/cylinder bodies for a range of cavitation numbers through comparing with the experimental data. Flow characteristics trends associated with off-design flow and twin cavities in the blade channel are observed using the presented cavitation prediction. The rapid drop in head coefficient at low cavitation number is captured for two different flow coefficients. Local flow field solution illustrates the principle physical mechanisms associated with the onset of breakdown. Copyright 2006 John Wiley & Sons, Ltd. [source]


Surrogate model-based strategy for cryogenic cavitation model validation and sensitivity evaluation

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 9 2008
Tushar Goel
Abstract The study of cavitation dynamics in cryogenic environment has critical implications for the performance and safety of liquid rocket engines, but there is no established method to estimate cavitation-induced loads. To help develop such a computational capability, we employ a multiple-surrogate model-based approach to aid in the model validation and calibration process of a transport-based, homogeneous cryogenic cavitation model. We assess the role of empirical parameters in the cavitation model and uncertainties in material properties via global sensitivity analysis coupled with multiple surrogates including polynomial response surface, radial basis neural network, kriging, and a predicted residual sum of squares-based weighted average surrogate model. The global sensitivity analysis results indicate that the performance of cavitation model is more sensitive to the changes in model parameters than to uncertainties in material properties. Although the impact of uncertainty in temperature-dependent vapor pressure on the predictions seems significant, uncertainty in latent heat influences only temperature field. The influence of wall heat transfer on pressure load is insignificant. We find that slower onset of vapor condensation leads to deviation of the predictions from the experiments. The recalibrated model parameters rectify the importance of evaporation source terms, resulting in significant improvements in pressure predictions. The model parameters need to be adjusted for different fluids, but for a given fluid, they help capture the essential fluid physics with different geometry and operating conditions. Copyright 2008 John Wiley & Sons, Ltd. [source]


Comparison of Tensile and Compressive Creep Behavior in Silicon Nitride

JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 8 2000
Kyung Jin Yoon
The creep behavior of a commercial grade of Si3N4 was studied at 1350 and 1400C. Stresses ranged from 10 to 200 MPa in tension and from 30 to 300 MPa in compression. In tension, the creep rate increased linearly with stress at low stresses and exponentially at high stresses. By contrast, the creep rate in compression increased linearly with stress over the entire stress range. Although compressive and tensile data exhibited an Arrhenius dependence on temperature, the activation energies for creep in tension, 715.3 22.9 kJ/mol, and compression, 489.2 62.0 kJ/mol, were not the same. These differences in creep behavior suggests that mechanisms of creep in tension and compression are different. Creep in tension is controlled by the formation of cavities. The cavity volume fraction increased linearly with increased tensile creep strain with a slope of unity. A cavitation model of creep, developed for materials that contain a triple-junction network of second phase, rationalizes the observed creep behavior at high and low stresses. In compression, cavitation plays a less important role in the creep process. The volume fraction of cavities in compression was ,18% of that in tension at 1.8% axial strain and approached zero at strains <1%. The linear dependence of creep rate on applied stress is consistent with a model for compressive creep involving solution,precipitation of Si3N4. Although the tensile and compressive creep rates overlapped at the lowest stresses, cavity volume fraction measurements showed that solution,precipitation creep of Si3N4 did not contribute substantially to the tensile creep rate. Instead, cavitation creep dominated at high and low stresses. [source]


Modeling and Numerical Simulation of Cavitation for Compressible Liquid Flow

PROCEEDINGS IN APPLIED MATHEMATICS & MECHANICS, Issue 1 2003
A. Berg
A method for the numerical simulation of cavitation phenomena based on the thermodynamic properties of liquid and steam is described. Thereby, a homogeneous cavitation model using a fully compressible discretization technique is considered. The ability of the scheme is proven by numerical experiments. [source]