| |||
CaCl2 Extraction (cacl2 + extraction)
Selected AbstractsAssessment of zinc phytoavailability by diffusive gradients in thin filmsENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 4 2005Osman Sonmez Abstract Asessment of Zn phytoavailability can be predicted with routine soil extractants, but these methods generally do not perform well across a wide range of soils. The newly developed technique of diffuse gradients in thin films (DGT) has been employed to determine phytoavailable Cu concentrations, but its suitability for determining plant available Zn concentrations has not been evaluated. A greenhouse study was conducted to assess the phytotoxicity thresholds and the phytoavailability of Zn to sorghum-sudan (Sorghum vulgare var. sudanese) grass by DGT, compared with CaCl2 extraction. A range of phytoavailable Zn concentrations was created by amending sand with ZnSO4 or with two different Zn mine wastes. Plant nutrients were added as Hoagland solution. In general, increasing Zn concentrations in the sand mixtures increased Zn adsorption by DGT and decreased the sorghum-sudan yield. A critical value for 90% of the control yield was chosen as an indicator of Zn toxicity. Critical values of DGT Zn, CaCl2 -extractable Zn, and plant tissue Zn were similar statistically across the three Zn sources. The performances of DGT and CaCl2 extraction for assessing Zn phytoavailability were similar. Shoot and root Zn concentrations of sorghum-sudan grass exceeded 500 mg kg,1 for many treatments. Calcium-to-Zn ratios for shoots were <32, suggesting Zn phytotoxicity. The data suggested that Zn phytotoxicity can be induced with mine wastes, although further evaluation is needed to establish a link between mine waste and Zn phytotoxicity. [source] Relationship between soil copper content and copper content of selected crop plants in central ChileENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 12 2001Ricardo Badilla-Ohlbaum Abstract A survey of copper levels in agricultural soils of central Chile revealed two soil clusters,one with a mean copper level of 162 mg/kg and one with a mean copper level of 751 mg/kg of soil. Samples of soils from both soil clusters were characterized on the basis of physicochemical characteristics, and copper extractability was compared by saturation and CaCl2 extraction as well as an acid-leaching procedure (TCLP). We also measured the copper content of various tissues of tomato (Lycopersicon esculentum) and onion (Allium cepa) crops growing on these soils. Other than copper levels, soils from the two clusters were quite similar, with slightly greater levels of molybdenum and cadmium in the high-copper soils. Within each cluster, extracted copper levels and total soil copper levels were not correlated. However, the three extraction procedures solubilized significantly more copper from the high-Cu soils. Mineralogical characterization of the soil particles and depth profiles of soil metal levels in a subsample of sites suggested that highly insoluble copper ore and mining wastes might account for the high copper levels. Neither total nor extractable copper levels allowed statistical prediction of the levels of copper in plant tissue. The edible tissues of both crops had the same mean copper content, regardless of the copper soil level. However, copper contents of stems and leaves were significantly higher for plants growing on the high-Cu soils. These results show that in these soils, high copper levels are associated with very insoluble copper species and thus low bioavailability of copper to crop plants. [source] Methods for determining labile cadmium and zinc in soilEUROPEAN JOURNAL OF SOIL SCIENCE, Issue 1 2000S. D. Young Summary Isotopically exchangeable cadmium and zinc (,E values') were measured on soils historically contaminated by sewage sludge and ones on zinc-rich mine spoil. The E -value assay involves determining the distribution of an added metal isotope, e.g. 109Cd, between the solid and solution phases of a soil suspension. The E values for both metals were found to be robust to changes in the position of the metal solid,solution equilibrium, even though the concentration of dissolved metal varied substantially with electrolyte composition and soil:solution ratio. Concentration of labile metal was also invariant over isotope equilibration times of 2,6 days. The use of a submicron filtration procedure, in addition to centrifuging at 2200 g, proved unnecessary if 0.1 m Ca electrolyte was used to suspend the soils. The proportion of ,fixed' metal, in non-labile forms, apparently increased with increasing pH, although there was considerable variation in both sets of contaminated soil. Zinc and cadmium in the sludged soils were similarly labile. Several possible methods for the measurement of chemically reactive metal were explored for comparison with E values, including single extraction with 1 m CaCl2 and a ,pool depletion' (PD) method. The latter involves comparing solid,solution metal equilibria in two electrolytes with differing degrees of (solution) complex formation, 0.1 m Ca(NO3)2 and CaCl2. Both the single extraction and the PD method gave good estimates of E value for Cd, although the single extraction was more consistent. Neither technique was a useful substitute for determining labile Zn, because of weak chloro-complexation of Zn2+. We therefore suggest that 1 m CaCl2 extraction of Cd alone be used as an alternative to E values to avoid the inconvenience of isotopic dilution procedures. [source] Phosphate buffer,extractable organic nitrogen as an index of soil-N availability for sorghum and pearl milletJOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 2 2010Asako Mori Abstract The availability of soil nitrogen (N) is usually quantified by the amount of mineralized N as determined after several weeks of soil incubation. Various alternative methods using chemical solvents have been developed to extract the available organic N, which is easily mineralized. We compared one such solution, neutral phosphate buffer (NPB), with conventional incubation and 0.01 M,CaCl2 extraction, as measures of soil N available to two major cereal crops of the semiarid tropics, based on the total N uptake by plants in a pot experiment. Mineralized N had the highest correlation with N uptake by pearl millet (Pennisetum glaucum L., r = 0.979***) and sorghum (Sorghum bicolor [L.] Moench, r = 0.978***). NPB-extractable N was also highly correlated with N uptake (pearl millet, r = 0.876***; sorghum, r = 0.872***). Only one major peak was detected when NPB extracts were analyzed using size-exclusion high-performance liquid chromatography, regardless of soil properties. In addition, the organic N extracted with NPB was characterized by determining the content of peptidoglycan, the main component of bacterial cell walls. Although the characteristics of NPB-extractable organic N are still unclear, it offers a promising quick assay of available N. [source] Development of a simulated earthworm gut for determining bioaccessible arsenic, copper, and zinc from soil,ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 7 2009Wai K. Ma Abstract Soil physicochemical characteristics and contamination levels alter the bioavailability of metals to terrestrialinvertebrates. Current laboratory-derived benchmark concentrations used to estimate risk do not take into account site-specific conditions, such as contaminant sequestration, and site-specific risk assessment requires a battery of time-consuming and costly toxicity tests. The development of an in vitro simulator for earthworm bioaccessibility would significantly shorten analytical time and enable site managers to focus on areas of greatest concern. The simulated earthworm gut (SEG) was developed to measure the bioaccessibility of metals in soil to earthworms by mimicking the gastrointestinal fluid composition of earthworms. Three formulations of the SEG (enzymes, microbial culture, enzymes and microbial culture) were developed and used to digest field soils from a former industrial site with varying physicochemical characteristics and contamination levels. Formulations containing enzymes released between two to 10 times more arsenic, copper, and zinc from contaminated soils compared with control and 0.01 M CaCl2 extractions. Metal concentrations in extracts from SEG formulation with microbial culture alone were not different from values for chemical extractions. The mechanism for greater bioaccessible metal concentrations from enzyme-treated soils is uncertain, but it is postulated that enzymatic digestion of soil organic matter might release sequestered metal. The relevance of these SEG results will need validation through further comparison and correlation with bioaccumulation tests, alternative chemical extraction tests, and a battery of chronic toxicity tests with invertebrates and plants. [source] |