| |||
Ca2+ Uptake (ca2+ + uptake)
Kinds of Ca2+ Uptake Selected AbstractsWhen is high-Ca2+ microdomain required for mitochondrial Ca2+ uptake?,ACTA PHYSIOLOGICA, Issue 1 2009A. Spät Abstract Ca2+ release from IP3 -sensitive stores in the endoplasmic reticulum (ER) induced by Ca2+ -mobilizing agonists generates high-Ca2+ microdomains between ER vesicles and neighbouring mitochondria. Here we present a model that describes when such microdomains are required and when submicromolar [Ca2+] is sufficient for mitochondrial Ca2+ uptake. Mitochondrial Ca2+ uptake rate in angiotensin II-stimulated H295R adrenocortical cells correlates with the proximity between ER vesicles and the mitochondrion, reflecting the uptake promoting effect of high-Ca2+ peri-mitochondrial microdomains. Silencing or inhibition of p38 mitogen-activated protein kinase (MAPK) or inhibition of the novel isoforms of protein kinase C enhances mitochondrial Ca2+ uptake and abolishes the positive correlation between Ca2+ uptake and ER-mitochondrion proximity. Inhibition of protein phosphatases attenuates mitochondrial Ca2+ uptake and also abolishes its positive correlation with ER-mitochondrion proximity. We postulate that during IP3 -induced Ca2+ release, Ca2+ uptake is confined to ER-close mitochondria, because of the simultaneous activation of the protein kinases. Attenuation of Ca2+ uptake prevents Ca2+ overload of mitochondria and thus protects the cell against apoptosis. On the other hand, all the mitochondria accumulate Ca2+ at a non-inhibited rate during physiological Ca2+ influx through the plasma membrane. Membrane potential is higher in ER-distant mitochondria, providing a bigger driving force for Ca2+ uptake. Our model explains why comparable mitochondrial Ca2+ signals are formed in response to K+ and angiotensin II (equipotent in respect to global cytosolic Ca2+ signals), although only the latter generates high-Ca2+ microdomains. [source] Walker tumor cells express larger amounts of the antiapoptotic protein Bcl-2 and presents higher resistance to toxic concentrations of Ca2+ than the tumor cells K 562DRUG DEVELOPMENT RESEARCH, Issue 4 2001Graziela Milani Abstract Ca2+ homeostasis was studied in two tumor cell lines (Walker 256 and K 562) previously shown to exhibit different mitochondrial Ca2+ accumulation capacity. When intact, both cells present cytosolic Ca2+ concentrations within the range expected for mammalian cells, as determined through fura-2 fluorescence ratios. In order to study intracellular Ca2+ distribution, digitonin was used to permeabilize the plasma membrane without affecting intracellular organelle structure, as assessed using electron microscopy. Digitonin-permeabilized Walker 256 cells incubated with Ca2+ presented uptake of the cation exclusively through mitochondrial activity. In addition, very large Ca2+ loads were necessary to promote a disruption of Walker 256 mitochondrial membrane potential. K 562 cells presented active Ca2+ uptake through both nonmitochondrial and mitochondrial compartments and suffered disruption of mitochondrial membrane potential at lower Ca2+ loads than Walker 256 mitochondria. The higher Ca2+ resistance in Walker 256 cells could be attributed to Bcl-2 overexpression, as evidenced by immunocytochemical staining. Thus, we correlate natural Bcl-2 overexpression, observed in Walker 256 cells, with higher resistance to mitochondrial Ca2+ overload, as was shown previously in mitochondria from cells transfected with the bcl-2 gene. Drug Dev. Res. 52:508,514, 2001. © 2001 Wiley-Liss, Inc. [source] Chronic toxicity of lead to three freshwater invertebrates,Brachionus calyciflorus, Chironomus tentans, and Lymnaea stagnalisENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 1 2006Martin Grosell Abstract Chronic lead (Pb) toxicity tests with Brachionus calyciflorus, Chironomus tentans, and Lymnaea stagnalis were performed in artificial freshwaters. The no-observable-effect concentration (NOEC), lowest-observable-effect concentration (LOEC), and calculated 20% effect concentration (EC20) for the rotifer B. calyciflorus were 194, 284, and 125 ,g dissolved Pb/L, respectively. The midge C. tentans was less sensitive, with NOEC and LOEC of 109 and 497 ,g dissolved Pb/L, respectively, and the snail L. stagnalis exhibited extreme sensitivity, evident by NOEC, LOEC, and EC20 of 12, 16, and <4 ,g dissolved Pb/L, respectively. Our findings are presented in the context of other reports on chronic Pb toxicity in freshwater organisms. The L. stagnalis results are in agreement with a previous report on pulmonate snails and should be viewed in the context of current U.S. Environmental Protection Agency (U.S. EPA) hardness adjusted water quality criteria of 8 ,g Pb/L. The present findings and earlier reports indicate that freshwater pulmonate snails may not be protected by current regulatory standards. Measurements of whole-snail Na+ and Ca2+ concentrations following chronic Pb exposure revealed that Na+ homeostasis is disturbed by Pb exposure in juvenile snails in a complicated pattern, suggesting two physiological modes of action depending on the Pb exposure concentration. Substantially reduced growth in the snails that exhibit very high Ca2+ requirements may be related to reduced Ca2+ uptake and thereby reduced shell formation. [source] Voltage- and Ca2+ -activated potassium channels in Ca2+ store control Ca2+ releaseFEBS JOURNAL, Issue 15 2006Masayuki Yamashita Ca2+ release from Ca2+ stores is a ,quantal' process; it terminates after a rapid release of stored Ca2+. To explain the quantal nature, it has been supposed that a decrease in luminal Ca2+ acts as a ,brake' on store release. However, the mechanism for the attenuation of Ca2+ efflux remains unknown. We show that Ca2+ release is controlled by voltage- and Ca2+ -activated potassium channels in the Ca2+ store. The potassium channel was identified as the big or maxi-K (BK)-type, and was activated by positive shifts in luminal potential and luminal Ca2+ increases, as revealed by patch-clamp recordings from an exposed nuclear envelope. The blockage or closure of the store BK channel due to Ca2+ efflux developed lumen-negative potentials, as revealed with an organelle-specific voltage-sensitive dye [DiOC5(3); 3,3'-dipentyloxacarbocyanine iodide], and suppressed Ca2+ release. The store BK channels are reactivated by Ca2+ uptake by Ca2+ pumps regeneratively with K+ entry to allow repetitive Ca2+ release. Indeed, the luminal potential oscillated bistably by ,45 mV in amplitude. Our study suggests that Ca2+ efflux-induced store BK channel closures attenuate Ca2+ release with decreases in counter-influx of K+. [source] Involvement of Ca2+ and ROS in ,-tocopheryl succinate-induced mitochondrial permeabilizationINTERNATIONAL JOURNAL OF CANCER, Issue 8 2010Vladimir Gogvadze Abstract Release of mitochondrial proteins such as cytochrome c, AIF, Smac/Diablo etc., plays a crucial role in apoptosis induction. A redox-silent analog of vitamin E, ,-tocopheryl succinate (,-TOS), was shown to stimulate cytochrome c release via production of reactive oxygen species (ROS) and Bax-mediated permeabilization of the outer mitochondrial membrane. Here we show that ,-TOS facilitates mitochondrial permeability transition (MPT) in isolated rat liver mitochondria, Tet21N neuroblastoma cells and Jurkat T-lymphocytes. In particular, in addition to ROS production, ,-TOS stimulates rapid Ca2+ entry into the cells with subsequent accumulation of Ca2+ in mitochondria,a prerequisite step for MPT induction. Alteration of mitochondrial Ca2+ buffering capacity was observed as early as 8 hr after incubation with ,-TOS, when no activation of Bax was yet detected. Ca2+ accumulation in mitochondria was important for apoptosis progression, since inhibition of mitochondrial Ca2+ uptake significantly mitigated the apoptotic response. Importantly, Ca2+ -induced mitochondrial destabilization might cooperate with Bax-mediated mitochondrial outer membrane permeabilization to induce cytochrome c release from mitochondria. [source] Mitochondria and Ca2+ signalingJOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 3 2000Emil C. Toescu Abstract Mitochondria play a central role in cell homeostasis. Amongst others, one of the important functions of mitochondria is to integrate its metabolic response with one of the major signaling pathways - the Ca2+ signaling. Mitochondria are capable to sense the levels of cytosolic Ca2+ and generate mitochondrial Ca2+ responses. Specific mechanisms for both Ca2+ uptake and Ca2+ release exist in the mitochondrial membranes. In turn, the mitochondrial Ca2+ signals are able to produce changes in the mitochondrial function and metabolism, which provide the required level of functional integration. This essay reviews briefly the current available information regarding the mitochondrial Ca2+ transport systems and some of the functional consequences of mitochondrial Ca2+ uptake [source] Characterization of Ca2+ signaling pathways in mouse adrenal medullary chromaffin cellsJOURNAL OF NEUROCHEMISTRY, Issue 5 2010Pei-Chun Wu J. Neurochem. (2010) 112, 1210,1222. Abstract In the present study, we characterized the Ca2+ responses and secretions induced by various secretagogues in mouse chromaffin cells. Activation of the acetylcholine receptor (AChR) by carbachol induced a transient intracellular Ca2+ concentration ([Ca2+]i) increase followed by two phases of [Ca2+]i decay and a burst of exocytic events. The contribution of the subtypes of AChRs to carbachol-induced responses was examined. Based on the results obtained by stimulating the cells with the nicotinic receptor (nAChR) agonist, 1,1-dimethyl-4-phenylpiperazinium iodide, high K+ and the effects of thapsigargin, it appears that activation of nAChRs induces an extracellular Ca2+ influx, which in turn activate Ca2+ -induced Ca2+ release via the ryanodine receptors. Muscarine, a muscarinic receptor (mAChRs) agonist, was found to induce [Ca2+]i oscillation and sustained catecholamine release, possibly by activation of both the receptor- and store-operated Ca2+ entry pathways. The RT-PCR results showed that mouse chromaffin cells are equipped with messages for multiple subtypes of AChRs, ryanodine receptors and all known components of the receptor- and store-operated Ca2+ entry. Furthermore, results obtained by directly monitoring endoplasmic reticulum (ER) and mitochondrial Ca2+ concentration and by disabling mitochondrial Ca2+ uptake suggest that the ER acts as a Ca2+ source, while the mitochondria acts as a Ca2+ sink. Our results show that both nAChRs and mAChRs contribute to the initial carbachol-induced [Ca2+]i increase which is further enhanced by the Ca2+ released from the ER mediated by Ca2+ -induced Ca2+ release and mAChR activation. This information on the Ca2+ signaling pathways should lay a good foundation for future studies using mouse chromaffin cells as a model system. [source] Altered distribution of mitochondria impairs calcium homeostasis in rat hippocampal neurons in cultureJOURNAL OF NEUROCHEMISTRY, Issue 1 2003Guang Jian Wang Abstract The specificity of Ca2+ signals is conferred in part by limiting changes in cytosolic Ca2+ to subcellular domains. Mitochondria play a major role in regulating Ca2+ in neurons and may participate in its spatial localization. We examined the effects of changes in the distribution of mitochondria on NMDA-induced Ca2+ increases. Hippocampal cultures were treated with the microtubule-destabilizing agent vinblastine, which caused the mitochondria to aggregate and migrate towards one side of the neuron. This treatment did not appear to decrease the energy status of mitochondria, as indicated by a normal membrane potential and pH gradient across the inner membrane. Moreover, electron microscopy showed that vinblastine treatment altered the distribution but not the ultrastructure of mitochondria. NMDA (200 µm, 1 min) evoked a greater increase in cytosolic Ca2+ in vinblastine-treated cells than in untreated cells. This increase did not result from impaired Ca2+ efflux, enhanced Ca2+ influx, opening of the mitochondrial permeability transition pore or altered function of endoplasmic reticulum Ca2+ stores. Ca2+ uptake into mitochondria was reduced by 53% in vinblastine-treated cells, as reported by mitochondrially targeted aequorin. Thus, the distribution of mitochondria maintained by microtubules is critical for buffering Ca2+ influx. A subset of mitochondria close to a Ca2+ source may preferentially regulate Ca2+ microdomains, set the threshold for Ca2+ -induced toxicity and participate in local ATP production. [source] Sodium-induced calcium deficiency in sugar beet during substitution of potassium by sodiumJOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 2 2009Abdul Wakeel Abstract Functions of sodium (Na+) and potassium (K+) are closely associated. In some crops, Na+ is able to prevent or reduce considerably the occurrence of K+ deficiency. Sugar beet (Beta vulgaris L.) is a natrophilic crop, and positive effects of Na+ applications on yield were observed when K+ was sufficiently supplied. However, it is not known which specific function of K+ can limit the growth of sugar beet when K+ is substituted by an equivalent amount of Na+. Therefore, K+ substitution by Na+ was investigated for sugar beet in hydroponics. Surprisingly, no K+ -deficiency symptoms were observed. However, calcium (Ca2+) concentrations in the leaves were significantly decreased. Moreover, Ca2+ uptake and translocation through xylem sap were reduced in Na+ -treated plants. It is concluded that Ca2+ uptake by roots and its translocation via xylem sap primarily limit the possibility of K+ substitution by Na+ in sugar beet nutrition. [source] Aragonite crystalline matrix as an instructive microenvironment for neural developmentJOURNAL OF TISSUE ENGINEERING AND REGENERATIVE MEDICINE, Issue 8 2008H. Peretz Abstract The ability to mimic cell,matrix interactions in a way that closely resembles the natural environment is of a great importance for both basic neuroscience and for fabrication of potent scaffolding materials for nervous tissue engineering. Such scaffolding materials should not only facilitate cell attachment but also create a microenvironment that provides essential developmental and survival cues. We previously found that porous aragonite crystalline matrices of marine origin are an adequate and active biomaterial that promotes neural cell growth and tissue development. Here we studied the mechanism underlying these neural cell,material interactions, focusing on the three-dimensional (3D) surface architecture and matrix activity of these scaffolds. We introduced a new cloning technique of the hydrozoan Millepora dichotoma, through which calcein or 45Ca2+ were incorporated into the organism's growing skeleton and neuronal cells could then be cultured on the labelled matrices. Herein, we describe the role of matrix 3D architecture on neural cell type composition and survival in culture, and report for the first time on the capacity of neurons and astrocytes to exploit calcium ions from the supporting biomatrix. We found that hippocampal cells growing on the prelabelled aragonite lattice took up aragonite-derived Ca2+, and even enhanced this uptake when extracellular calcium ions were chelated by EGTA. When the aragonite-derived Ca2+ uptake was omitted by culturing the cells on coral skeletons coated with gold, cell survival was reduced but not arrested, suggesting a role for matrix architecture in neural survival. In addition, we found that the effects of scaffold architecture and chemistry on cell survival were more profound for neurons than for astrocytes. We submit that translocation of calcium from the biomaterial to the cells activates a variety of membrane-bound signalling molecules and leads to the subsequent cell behaviour. This kind of cell,material interaction possesses great potential for fabricating advanced biomaterials for neural tissue-engineering applications. Copyright © 2008 John Wiley & Sons, Ltd. [source] Junctin and the histidine-rich Ca2+ binding protein: potential roles in heart failure and arrhythmogenesisTHE JOURNAL OF PHYSIOLOGY, Issue 13 2009Tracy J. Pritchard Contractile dysfunction and ventricular arrhythmias associated with heart failure have been attributed to aberrant sarcoplasmic reticulum (SR) Ca2+ cycling. The study of junctin (JCN) and histidine-rich Ca2+ binding protein (HRC) becomes of particular importance since these proteins have been shown to be critical regulators of Ca2+ cycling. Specifically, JCN is a SR membrane protein, which is part of the SR Ca2+ release quaternary structure that also includes the ryanodine receptor, triadin and calsequestrin. Functionally, JCN serves as a bridge between calsequestrin and the Ca2+ release channel, ryanodine receptor. HRC is a SR luminal Ca2+ binding protein known to associate with both triadin and the sarcoplasmic reticulum Ca2+ -ATPase, and may thus mediate the crosstalk between SR Ca2+ uptake and release. Indeed, evidence from genetic models of JCN and HRC indicate that they are important in cardiophysiology as alterations in these proteins affect SR Ca2+ handling and cardiac function. In addition, downregulation of JCN and HRC may contribute to Ca2+ cycling perturbations manifest in the failing heart, where their protein levels are significantly reduced. This review examines the roles of JCN and HRC in SR Ca2+ cycling and their potential significance in heart failure. [source] Rapid Ca2+ flux through the transverse tubular membrane, activated by individual action potentials in mammalian skeletal muscleTHE JOURNAL OF PHYSIOLOGY, Issue 10 2009Bradley S. Launikonis Periods of low frequency stimulation are known to increase the net Ca2+ uptake in skeletal muscle but the mechanism responsible for this Ca2+ entry is not known. In this study a novel high-resolution fluorescence microscopy approach allowed the detection of an action potential-induced Ca2+ flux across the tubular (t-) system of rat extensor digitorum longus muscle fibres that appears to be responsible for the net uptake of Ca2+ in working muscle. Action potentials were triggered in the t-system of mechanically skinned fibres from rat by brief field stimulation and t-system [Ca2+] ([Ca2+]t-sys) and cytoplasmic [Ca2+] ([Ca2+]cyto) were simultaneously resolved on a confocal microscope. When initial [Ca2+]t-sys was , 0.2 mm a Ca2+ flux from t-system to the cytoplasm was observed following a single action potential. The action potential-induced Ca2+ flux and associated t-system Ca2+ permeability decayed exponentially and displayed inactivation characteristics such that further Ca2+ entry across the t-system could not be observed after 2,3 action potentials at 10 Hz stimulation rate. When [Ca2+]t-sys was closer to 0.1 mm, a transient rise in [Ca2+]t-sys was observed almost concurrently with the increase in [Ca2+]cyto following the action potential. The change in direction of Ca2+ flux was consistent with changes in the direction of the driving force for Ca2+. This is the first demonstration of a rapid t-system Ca2+ flux associated with a single action potential in mammalian skeletal muscle. The properties of this channel are inconsistent with a flux through the L-type Ca2+ channel suggesting that an as yet unidentified t-system protein is conducting this current. This action potential-activated Ca2+ flux provides an explanation for the previously described Ca2+ entry and accumulation observed with prolonged, intermittent muscle activity. [source] Characteristics and function of cardiac mitochondrial nitric oxide synthaseTHE JOURNAL OF PHYSIOLOGY, Issue 4 2009Elena N. Dedkova We used laser scanning confocal microscopy in combination with the nitric oxide (NO)-sensitive fluorescent dye DAF-2 and the reactive oxygen species (ROS)-sensitive dyes CM-H2DCF and MitoSOX Red to characterize NO and ROS production by mitochondrial NO synthase (mtNOS) in permeabilized cat ventricular myocytes. Stimulation of mitochondrial Ca2+ uptake by exposure to different cytoplasmic Ca2+ concentrations ([Ca2+]i= 1, 2 and 5 ,m) resulted in a dose-dependent increase of NO production by mitochondria when l -arginine, a substrate for mtNOS, was present. Collapsing the mitochondrial membrane potential with the protonophore FCCP or blocking the mitochondrial Ca2+ uniporter with Ru360 as well as blocking the respiratory chain with rotenone or antimycin A in combination with oligomycin inhibited mitochondrial NO production. In the absence of l -arginine, mitochondrial NO production during stimulation of Ca2+ uptake was significantly decreased, but accompanied by increase in mitochondrial ROS production. Inhibition of mitochondrial arginase to limit l -arginine availability resulted in 50% inhibition of Ca2+ -induced ROS production. Both mitochondrial NO and ROS production were blocked by the nNOS inhibitor (4S)- N -(4-amino-5[aminoethyl]aminopentyl)- N,-nitroguanidine and the calmodulin antagonist W-7, while the eNOS inhibitor l - N5 -(1-iminoethyl)ornithine (l -NIO) or iNOS inhibitor N -(3-aminomethyl)benzylacetamidine, 2HCl (1400W) had no effect. The superoxide dismutase mimetic and peroxynitrite scavenger MnTBAP abolished Ca2+ -induced ROS generation and increased NO production threefold, suggesting that in the absence of MnTBAP either formation of superoxide radicals suppressed NO production or part of the formed NO was transformed quickly to peroxynitrite. In the absence of l -arginine, mitochondrial Ca2+ uptake induced opening of the mitochondrial permeability transition pore (PTP), which was blocked by the PTP inhibitor cyclosporin A and MnTBAP, and reversed by l -arginine supplementation. In the presence of the mtNOS cofactor (6R)-5,6,7,8,-tetrahydrobiopterin (BH4; 100 ,m) mitochondrial ROS generation and PTP opening decreased while mitochondrial NO generation slightly increased. These data demonstrate that mitochondrial Ca2+ uptake activates mtNOS and leads to NO-mediated protection against opening of the mitochondrial PTP, provided sufficient availability of l -arginine and BH4. In conclusion, our data show the importance of l -arginine and BH4 for cardioprotection via regulation of mitochondrial oxidative stress and modulation of PTP opening by mtNOS. [source] Role of mitochondria in modulation of spontaneous Ca2+ waves in freshly dispersed interstitial cells of Cajal from the rabbit urethraTHE JOURNAL OF PHYSIOLOGY, Issue 19 2008Gerard P. Sergeant Interstitial cells of Cajal (ICC) isolated from the rabbit urethra exhibit pacemaker activity that results from spontaneous Ca2+ waves. The purpose of this study was to investigate if this activity was influenced by Ca2+ uptake into mitochondria. Spontaneous Ca2+ waves were recorded using a Nipkow spinning disk confocal microscope and spontaneous transient inward currents (STICs) were recorded using the whole-cell patch clamp technique. Disruption of the mitochondrial membrane potential with the electron transport chain inhibitors rotenone (10 ,m) and antimycin A (5 ,m) abolished Ca2+ waves and increased basal Ca2+ levels. Similar results were achieved when mitochondria membrane potential was collapsed using the protonophores FCCP (0.2 ,m) and CCCP (1 ,m). Spontaneous Ca2+ waves were not inhibited by the ATP synthase inhibitor oligomycin (1 ,m), suggesting that these effects were not attributable to an effect on ATP levels. STICs recorded under voltage clamp at ,60 mV were also inhibited by CCCP and antimycin A. Dialysis of cells with the mitochondrial uniporter inhibitor RU360 (10 ,m) also inhibited STICS. Stimulation of Ca2+ uptake into mitochondria using the plant flavonoid kaempferol (10 ,m) induced a series of propagating Ca2+ waves. The kaempferol-induced activity was inhibited by application of caffeine (10 mm) or removal of extracellular Ca2+, but was not significantly affected by the IP3 receptor blocker 2-APB (100 ,m). These data suggest that spontaneous Ca2+ waves in urethral ICC are regulated by buffering of cytoplasmic Ca2+ by mitochondria. [source] The sodium-calcium exchanger is a mechanosensitive transporterTHE JOURNAL OF PHYSIOLOGY, Issue 6 2008John P. Reeves This report describes the influence of fluid flow and osmotically induced volume changes on Na+,Ca2+ exchange (NCX) activity in transfected CHO cells. Exchange activity was measured as Na+ -dependent Ca2+ or Ba2+ fluxes using the fluorescent probe fura-2. When exchange activity was initiated by superfusing Ba2+ -containing solutions over the cells for a 20 s interval, a high rate of Ba2+ uptake was observed while the solution was being applied but the rate of Ba2+ uptake declined > 10-fold when the solution flow ceased. Ba2+ efflux in exchange for extracellular Na+ or Ca2+ (Ba2+,Ca2+ exchange) was similarly biphasic. During NCX-mediated Ca2+ uptake, a rapid increase in cytosolic [Ca2+] to a peak value occurred, followed by a decline in [Ca2+]i to a lower steady-state value after solution flow ceased. When NCX activity was initiated by an alternate procedure that minimized the duration of solution flow, the rapid phase of Ba2+ influx was greatly reduced in magnitude and Ca2+ uptake became nearly monophasic. Solution superfusion did not produce any obvious changes in cell shape or volume. NCX-mediated Ba2+ and Ca2+ influx were also sensitive to osmotically induced changes in cell volume. NCX activity was stimulated in hypotonic media and inhibited in hypertonic media; the osmotically induced changes in activity occurred within seconds and were rapidly reversible. We conclude that NCX activity is modulated by both solution flow and osmotically induced volume changes. [source] Modulation of excitation,contraction coupling by isoproterenol in cardiomyocytes with controlled SR Ca2+ load and Ca2+ current triggerTHE JOURNAL OF PHYSIOLOGY, Issue 2 2004Kenneth S. Ginsburg Cardiac Ca2+ transients are enhanced by cAMP-dependent protein kinase (PKA). However, PKA-dependent modulation of ryanodine receptor (RyR) function in intact cells is difficult to measure, because PKA simultaneously increases Ca2+ current (ICa), SR Ca2+ uptake and SR Ca2+ loading (which independently increase SR Ca2+ release). We measured ICa and SR Ca2+ release ± 1 ,m isoproterenol (ISO; isoprenaline) in voltage-clamped ventricular myocytes of rabbits and transgenic mice (expressing only non-phosphorylatable phospholamban). This mouse model helps control for any effect of ISO-enhanced SR uptake on observed release, but the two species produced essentially identical results. SR Ca2+ load and ICa were adjusted by conditioning. We thus evaluated PKA effects on SR Ca2+ release at constant SR Ca2+ load and ICa trigger (with constant unitary ICa). The amount of SR Ca2+ release increased as a function of either ICa or SR Ca2+ load, but ISO did not alter the relationships (measured as gain or fractional release). This was true over a wide range of SR Ca2+ load and ICa. However, the maximal rate of SR Ca2+ release was ,50% faster with ISO (at most loads and ICa levels). We conclude that the isolated effect of PKA on SR Ca2+ release is an increase in maximal rate of release and faster turn-off of release (such that integrated SR Ca2+ release is unchanged). The increased amount of SR Ca2+ release normally seen with ISO depends primarily on increased ICa trigger and SR Ca2+ load, whereas faster release kinetics may be the main result of RyR phosphorylation. [source] Uncoupling proteins: A complex journey to function discoveryBIOFACTORS, Issue 5 2009Federica Cioffi Abstract Since their discovery, uncoupling proteins have aroused great interest due to the crucial importance of energy-dissipating system for cellular physiology. The uncoupling effect and the physiological role of UCP1 (the first-described uncoupling protein) are well established. However, the reactions catalyzed by UCP1 homologues (UCPs), and their physiological roles are still under debate, with the literature containing contrasting results. Current hypothesis propose several physiological functions for novel UCPs, such as: (i) attenuation of reactive oxygen species production and protection against oxidative damage, (ii) thermogenic function, although UCPs do not generally seem to affect thermogenesis, UCP3 can be thermogenic under certain conditions, (iii) involvement in fatty acid handling and/or transport, although recent experimental evidence argues against the previously hypothesized role for UCPs in the export of fatty acid anions, (iv) fatty acid hydroperoxide export, although this function, due to the paucity of the experimental evidence, remains hypothetical, (v) Ca2+ uptake, although results for and against a role in Ca2+ uptake are still emerging, (vi) a signaling role in pancreatic beta cells, where it attenuates glucose-induced insulin secretion. From the above, it is evident that more research will be needed to establish universally accepted functions for UCPs. © 2009 International Union of Biochemistry and Molecular Biology, Inc. [source] Protein kinase C modulation of the regulation of sarcoplasmic reticular function by protein kinase A-mediated phospholamban phosphorylation in diabetic ratsBRITISH JOURNAL OF PHARMACOLOGY, Issue 2 2004Satoko Watanuki The goal of this study was to elucidate the possible mechanisms by which protein kinase A (PKA)-mediated regulation of the sarcoplasmic reticulum (SR) via phospholambin protein phosphorylation is functionally impaired in streptozotocin-induced diabetic rats. Phospholamban (PLB) protein and mRNA levels were 1.3-fold higher in diabetic than in control hearts, while protein expression of cardiac SR Ca2+ -ATPase (SERCA2a) was unchanged. Basal and isoprenaline-stimulated phosphorylation of PLB at Ser16 or Thr17 was unchanged in diabetic hearts. However, stronger immunoreactivity was observed at the basal level in diabetic hearts when antiphosphoserine antibody was used. Basal 32P incorporation into PLB was significantly higher in diabetic than in control SR vesicles, but the extent of the PKA-mediated increase in PLB phosphorylation was the same in the two groups of vesicles. Stimulation of Ca2+ uptake by PKA-catalyzed PLB phosphorylation was weaker in diabetic than in control SR vesicles. The PKA-induced increase in Ca2+ uptake was attenuated when control SR vesicles were preincubated with protein kinase C (PKC). PKC activities were increased by more than two-fold in the membranous fractions from diabetic hearts in comparison with control values, regardless of whether Ca2+ was present. This was associated with increases in the protein content of PKC,, PKC,, PKC,, and PKC, in diabetic membranous fractions. The changes observed in diabetic rats were reversed by insulin therapy. These results suggest that PKA-dependent phosphorylation may incompletely counteract the function of PLB as an inhibitor of SERCA2a activity in diabetes in which PKC expression and activity are enhanced. British Journal of Pharmacology (2004) 141, 347,359. doi:10.1038/sj.bjp.0705455 [source] Modulation of insulin release by adenosine A1 receptor agonists and antagonists in INS-1 cells: The possible contribution of 86Rb+ efflux and 45Ca2+ uptakeCELL BIOCHEMISTRY AND FUNCTION, Issue 8 2008M. Töpfer Abstract Due to the lack of specific agonists and antagonists the role of adenosine receptor subtypes with respect to their effect on the insulin secretory system is not well investigated. The A1 receptor may be linked to different 2nd messenger systems, i.e. cAMP, K+ - and 45Ca2+ channel activity. Partial A1 receptor agonists are going to be developed in order to improve diabetes (increase in insulin sensitivity, lowering of FFA and triglycerides). In this study newly synthesized selective A1 receptor agonists and antagonists were investigated thereby integrating three parameters, insulin release (RIA), 45Ca2+ uptake and 86Rb+ efflux (surrogate for K+ efflux) of INS-1 cells, an insulin secretory cell line. The presence of A1 -receptors was demonstrated by Western blotting. The receptor nonselective adenosine analogue NECA (5,- N -ethylcarboxyamidoadenosine) at high concentration (10,µM) had no effect on insulin release and 45Ca2+ uptake which could be interpreted as the sum of effects mediated by mutual antagonistic adenosine receptor subtypes. However, an inhibitory effect mediated by A1 receptor agonism was detected at 10,nM NECA and could be confirmed by adding the A1 receptor antagonist PSB-36 (1-butyl-8-(3-noradamantyl)-3-(3-hydroxy-propyl)xanthine). NECA inhibited 86Rb+ efflux which, however, did not fit with the simultaneous inhibition of insulin secretion. The selective A1 receptor agonist CHA (N6 -cyclohexyladenosine) inhibited insulin release; the simultaneously increased Ca2+ uptake (nifedipine dependent) and inhibition of 86Rb+ efflux did not fit the insulin release data. The CHA effect (even the maximum effect at 50,µM) can be increased by 10,µM NECA indicating that CHA and NECA have nonspecific and physiologically non-relevant effects on 86Rb+ efflux in addition to their A1 -receptor interaction. Since PSB-36 did not influence the NECA-induced inhibition of 86Rb+ efflux, the NECA effect is not mediated by potassium channel-linked A1 receptors. The nonselective adenosine receptor antagonist caffeine increased insulin release which was reversed by CHA as expected when hypothesizing that both act via A1 receptors in this case. In conclusion, stimulation of A1 receptors by receptor selective and nonselective compounds reduced insulin release which is not coupled to opening of potassium channels (86Rb+ efflux experiments) or inhibition of calcium channels (45Ca2+ uptake experiments). It may be expected that of all pleiotropic 2nd messengers, the cAMP system (not tested here) is predominant for A1 receptor effects and the channel systems (K+ and Ca2+) are of minor importance and do not contribute to insulin release though being coupled to the receptor in other tissues. Copyright © 2008 John Wiley & Sons, Ltd. [source] Itraconazole-mediated inhibition of calcium entry into platelet-activating factor-stimulated human neutrophils is due to interference with production of leukotriene B4CLINICAL & EXPERIMENTAL IMMUNOLOGY, Issue 1 2007H. C. Steel Summary The primary objective of this study was to probe the involvement of leukotriene B4 (LTB4) in itraconazole (0·1,5 µM)-mediated inhibition of Ca2+ uptake by chemoattractant-activated human neutrophils. Following exposure of the cells to platelet-activating factor (PAF, 200 nM), LTB4 was measured by immunoassay, while neutrophil cytosolic Ca2+ concentrations were determined by a fura-2/AM-based spectrofluorimetric procedure. Activation of neutrophils was accompanied by an abrupt and sustained (for about 1 min) elevation in cytosolic Ca2+ which was associated with increased generation of LTB4, both of which were attenuated significantly by itraconazole at 0·5 µM and higher. The inhibitory effect of the anti-mycotic on Ca2+ uptake by PAF-activated cells was mimicked by an LTB4 antibody, as well as by LY255283 (1 µM) and MK886 (0·5 µM), an antagonist of LTB4 receptors and an inhibitor of 5,-lipoxygenase-activating protein, respectively, while addition of itraconazole to purified 5,-lipoxygenase resulted in inhibition of enzyme activity. A mechanistic relationship between itraconazole-mediated inhibition of LTB4 production and Ca2+ influx was also supported by the observation that pulsed addition of purified LTB4 to PAF-activated neutrophils caused substantial restoration of Ca2+ uptake by cells treated with the anti-mycotic. Taken together, these observations suggest that the potentially beneficial anti-inflammatory interactions of itraconazole with activated neutrophils result from interference with production of LTB4, with consequent attenuation of a secondary LTB4 -mediated wave of Ca2+ uptake by the cells. [source] |