| |||
Ca2+ Sensor (ca2+ + sensor)
Selected AbstractsSynaptotagmin regulates mast cell functionsIMMUNOLOGICAL REVIEWS, Issue 1 2001Dana Baram Summary: Synaptotagmin(s) (Syts), are products of a gene family implicated in the control of Ca2+ -dependent exocytosis. Mast cells, specialized secretory cells that release mediators of inflammatory and allergic reactions in a process of regulated exocytosis, express Syt homologues and SNAREs (Soluble NSF Attachment proteins Receptors), which together with Syt constitute the core complex which mediates exocytotic vesicle docking and fusion. Rat basophilic leukemia cells (RBL-2H3), a tumor analogue of mucosal mast cells, express the Syt homologues Syt II, Syt III and Syt V. Expression of Syt I, the neuronal Ca2+ sensor, in the RBL cells, resulted in its targeting to secretory granules and in prominent potentiation and acceleration of Ca2+ -dependent exocytosis. Syt II is localized to an amine-free lysosomal compartment, which is also subjected to regulated exocytosis. Lysosomal exocytosis is negatively regulated by Syt II: overexpression of Syt II inhibited Ca2+ -triggered exocytosis of lysosomes, while suppression of Syt II expression markedly potentiated this release. These findings implicate Syt homologues as key regulators of mast cell function. We thank Drs. T.C. Sudhof, R.H. Scheller and M. Takahashi for their generous gifts of antibodies and cDNAs. [source] TRPC channels function independently of STIM1 and Orai1THE JOURNAL OF PHYSIOLOGY, Issue 10 2009Wayne I. DeHaven Recent studies have defined roles for STIM1 and Orai1 as calcium sensor and calcium channel, respectively, for Ca2+ -release activated Ca2+ (CRAC) channels, channels underlying store-operated Ca2+ entry (SOCE). In addition, these proteins have been suggested to function in signalling and constructing other channels with biophysical properties distinct from the CRAC channels. Using the human kidney cell line, HEK293, we examined the hypothesis that STIM1 can interact with and regulate members of a family of non-selective cation channels (TRPC) which have been suggested to also function in SOCE pathways under certain conditions. Our data reveal no role for either STIM1 or Orai1 in signalling of TRPC channels. Specifically, Ca2+ entry seen after carbachol treatment in cells transiently expressing TRPC1, TRPC3, TRPC5 or TRPC6 was not enhanced by the co-expression of STIM1. Further, knockdown of STIM1 in cells expressing TRPC5 did not reduce TRPC5 activity, in contrast to one published report. We previously reported in stable TRPC7 cells a Ca2+ entry which was dependent on TRPC7 and appeared store-operated. However, we show here that this TRPC7-mediated entry was also not dependent on either STIM1 or Orai1, as determined by RNA interference (RNAi) and expression of a constitutively active mutant of STIM1. Further, we determined that this entry was not actually store-operated, but instead TRPC7 activity which appears to be regulated by SERCA. Importantly, endogenous TRPC activity was also not regulated by STIM1. In vascular smooth muscle cells, arginine-vasopressin (AVP) activated non-selective cation currents associated with TRPC6 activity were not affected by RNAi knockdown of STIM1, while SOCE was largely inhibited. Finally, disruption of lipid rafts significantly attenuated TRPC3 activity, while having no effect on STIM1 localization or the development of ICRAC. Also, STIM1 punctae were found to localize in regions distinct from lipid rafts. This suggests that TRPC signalling and STIM1/Orai1 signalling occur in distinct plasma membrane domains. Thus, TRPC channels appear to be activated by mechanisms dependent on phospholipase C which do not involve the Ca2+ sensor, STIM1. [source] Evidence for chloroplast control of external Ca2+ -induced cytosolic Ca2+ transients and stomatal closureTHE PLANT JOURNAL, Issue 6 2008Hironari Nomura Summary The role of guard cell chloroplasts in stomatal function is controversial. It is usually assumed that stomatal closure is preceded by a transient increase in cytosolic free Ca2+ concentration ([Ca2+]cyt) in the guard cells. Here, we provide the evidence that chloroplasts play a critical role in the generation of extracellular Ca2+ ([Ca2+]ext)-induced [Ca2+]cyt transients and stomatal closure in Arabidopsis. CAS (Ca2+ sensing receptor) is a plant-specific putative Ca2+ -binding protein that was originally proposed to be a plasma membrane-localized external Ca2+ sensor. In the present study, we characterized the intracellular localization of CAS in Arabidopsis with a combination of techniques, including (i) in vivo localization of green fluorescent protein (GFP) fused gene expression, (ii) subcellular fractionation and fractional analysis of CAS with Western blots, and (iii) database analysis of thylakoid membrane proteomes. Each technique produced consistent results. CAS was localized mainly to chloroplasts. It is an integral thylakoid membrane protein, and the N-terminus acidic Ca2+ -binding region is likely exposed to the stromal side of the membrane. The phenotype of T-DNA insertion CAS knockout mutants and cDNA mutant-complemented plants revealed that CAS is essential for stomatal closure induced by external Ca2+. In contrast, overexpression of CAS promoted stomatal closure in the absence of externally applied Ca2+. Furthermore, using the transgenic aequorin system, we showed that [Ca2+]ext -induced [Ca2+]cyt transients were significantly reduced in CAS knockout mutants. Our results suggest that thylakoid membrane-localized CAS is essential for [Ca2+]ext -induced [Ca2+]cyt transients and stomatal closure. [source] Purification, crystallization and X-ray diffraction analysis of human synaptotagmin 1 C2A-C2BACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 9 2006Miguel Montes Synaptotagmin acts as the Ca2+ sensor for neuronal exocytosis. The cytosolic domain of human synaptotagmin 1 is composed of tandem C2 domains: C2A and C2B. These C2 domains modulate the interaction of synaptotagmin with the phospholipid bilayer of the presynaptic terminus and effector proteins such as the SNARE complex. Human synaptotagmin C2A-C2B has been expressed as a glutathione- S -transferase fusion protein in Escherichia coli. The purification, crystallization and preliminary X-ray analysis of this protein are reported here. The crystals diffract to 2.7,Å and belong to the orthorhombic space group P212121, with unit-cell parameters a = 82.37, b = 86.31, c = 140.2,Å. From self-rotation function analysis, there are two molecules in the asymmetric unit. The structure determination of the protein using this data is ongoing. [source] Ca2+ -dependent Regulation of Phototransduction,PHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 4 2008Ricardo Stephen Photon absorption by rhodopsin triggers the phototransduction signaling pathway that culminates in degradation of cGMP, closure of cGMP-gated ion channels and hyperpolarization of the photoreceptor membrane. This process is accompanied by a decrease in free Ca2+ concentration in the photoreceptor cytosol sensed by Ca2+ -binding proteins that modulate phototransduction and activate the recovery phase to reestablish the photoreceptor dark potential. Guanylate cyclase-activating proteins (GCAPs) belong to the neuronal calcium sensor (NCS) family and are responsible for activating retinal guanylate cyclases (retGCs) at low Ca2+ concentrations triggering synthesis of cGMP and recovery of the dark potential. Here we review recent structural insight into the role of the N-terminal myristoylation in GCAPs and compare it to other NCS family members. We discuss previous studies identifying regions of GCAPs important for retGC1 regulation in the context of the new structural data available for myristoylated GCAP1. In addition, we present a hypothetical model for the Ca2+ -triggered conformational change in GCAPs and retGC1 regulation. Finally, we briefly discuss the involvement of mutant GCAP1 proteins in the etiology of retinal degeneration as well as the importance of other Ca2+ sensors in the modulation of phototransduction. [source] |