Ca2+ Release (ca2+ + release)

Distribution by Scientific Domains
Distribution within Life Sciences

Kinds of Ca2+ Release

  • induced ca2+ release
  • intracellular ca2+ release


  • Selected Abstracts


    Lindane (,-Hexachlorocyclohexane) Induces Internal Ca2+ Release and Capacitative Ca2+ Entry in Madin-Darby Canine Kidney Cells

    BASIC AND CLINICAL PHARMACOLOGY & TOXICOLOGY, Issue 4 2000
    Cheng-Hsien Lu
    The effect of lindane (,-hexachlorocyclohexane), an organochlorine pesticide, on Ca2+ mobilization in Madin-Darby canine kidney cells was examined by fluorimetry using fura-2 as a Ca2+ indicator. Lindane (5,200 ,M) increased [Ca2+]i concentration-dependently. The [Ca2+]i signal comprised an immediate initial rise followed by a persistent phase. Ca2+ removal inhibited the [Ca2+]i signal by reducing both the initial rise and the sustained phase. This implies lindane-triggered Ca2+ influx and Ca2+ release. In Ca2+ -free medium, 0.15 mM lindane increased [Ca2+]i after pretreatment with carbonylcyanide m-chlorophenylhydrazone (CCCP; 2 ,M), a mitochondrial uncoupler, and two endoplasmic reticulum Ca2+ pump inhibitors, thapsigargin and cyclopiazonic acid. Conversely, pretreatment with lindane abolished CCCP- and thapsigargin-induced Ca2+ release. This suggests that 0.15 mM lindane released Ca2+ from the endoplasmic reticulum, mitochondria and other stores. La3+ (1 mM) partly inhibited 0.1 mM lindane-induced [Ca2+]i increase, confirming that lindane induced Ca2+ influx. Addition of 3 mM Ca2+ increased [Ca2+]i after pretreatment with 0.15 mM lindane for 750 sec. in Ca2+ -free medium, which indicates lindane-induced capacitative Ca2+ entry. Lindane (0.15 mM)-induced Ca2+ release was not reduced by inhibiting phospholipase C with 2 ,M U73122, but was inhibited by 70% by the phospholipase A2 inhibitor aristolochic acid (40 ,M). [source]


    Caffeine and theophylline block insulin-stimulated glucose uptake and PKB phosphorylation in rat skeletal muscles

    ACTA PHYSIOLOGICA, Issue 1 2010
    A. J. Kolnes
    Abstract Aim:, Caffeine and theophylline inhibit phosphatidylinositol 3-kinase (PI3-kinase) activity and insulin-stimulated protein kinase B (PKB) phosphorylation. Insulin-stimulated glucose uptake involves PI3-kinase/PKB, and the aim of the present study was to test the hypothesis that caffeine and theophylline inhibit insulin-stimulated glucose uptake in skeletal muscles. Methods:, Rat epitrochlearis muscles and soleus strips were incubated with insulin and different concentrations of caffeine and theophylline for measurement of glucose uptake, force development and PKB phosphorylation. The effect of caffeine was also investigated in muscles stimulated electrically. Results:, Caffeine and theophylline completely blocked insulin-stimulated glucose uptake in both soleus and epitrochlearis muscles at 10 mm. Furthermore, insulin-stimulated PKB Ser473 and Thr308 and GSK-3, Ser9 phosphorylation were blocked by caffeine and theophylline. Caffeine reduced and theophylline blocked insulin-stimulated glycogen synthase activation. Caffeine stimulates Ca2+ release and force development increased rapidly to 10,20% of maximal tetanic contraction. Dantrolene (25 ,m), a well-known inhibitor of Ca2+ -release, prevented caffeine-induced force development, but caffeine inhibited insulin-stimulated glucose uptake in the presence of dantrolene. Contraction, like insulin, stimulates glucose uptake via translocation of glucose transporter-4 (GLUT4). Caffeine and theophylline reduced contraction-stimulated glucose uptake by about 50%, whereas contraction-stimulated glycogen breakdown was normal. Conclusion:, Caffeine and theophylline block insulin-stimulated glucose uptake independently of Ca2+ release, and the likely mechanism is via blockade of insulin-stimulated PI3-kinase/PKB activation. Caffeine and theophylline also reduced contraction-stimulated glucose uptake, which occurs independently of PI3-kinase/PKB, and we hypothesize that caffeine and theophylline also inhibit glucose uptake in skeletal muscles via an additional and hitherto unknown molecule involved in GLUT4 translocation. [source]


    Effects of motilin on intracellular free calcium in cultured smooth muscle cells from the antrum of neonatal rats

    ACTA PHYSIOLOGICA, Issue 1 2010
    P. Fang
    Abstract Aim:, The aim of this study was to determine the effects of motilin on [Ca2+]i regulation and its underlying molecular mechanism in cultured antral smooth muscle cells (ASMCs). Methods:, Antral cells were isolated and cultured from neonatal rats, and then the [Ca2+]i in these cells was evaluated by calcium fluorescent probe Fluo-3/AM on a laser scanning confocal microscope. Results:, We show that motilin dose-dependently increased [Ca2+]i concentration in cultured ASMCs. Pre-incubation of cells with either the calcium antagonist verapamil (10,5 mol L,1) or the calcium chelator Egtazic (EGTA, 0.1 mmol L,1) significantly suppressed motilin (10,6 mol L,1) induced [Ca2+]i increase as indicated by fluorescent intensity. Interestingly, after mixing with the non-selective intracellular calcium release blocker TMB-8 (10,5 mol L,1), guanosine triphosphate regulatory protein antagonist NEM (10,5 mol L,1), phospholipase C (PLC) inhibitor compound 48/80 (1.2 ,g mL,1) and ryanodine at high concentration (10,5 mol L,1), the motilin-induced [Ca2+]i increase was only partially blocked. The protein kinase C inhibitor d -sphingosine (10,6 mol L,1), however, did not show any inhibitory effect on motilin-induced [Ca2+]i elevation. Conclusions:, Our study suggests that motilin-stimulated [Ca2+]i elevation in ASMCs is probably due to sustained extracellular Ca2+ influx and Ca2+ release from Ca2+ stores via inositol tris-phosphate receptors and ryanodine receptors. Specifically, motilin-induced [Ca2+]i release is accompanied with guanosine triphosphate-binding protein-coupled receptor,PLC,inositol tris-phosphate signalling cascades. [source]


    Acute atrial arrhythmogenesis in murine hearts following enhanced extracellular Ca2+ entry depends on intracellular Ca2+ stores

    ACTA PHYSIOLOGICA, Issue 2 2010
    Y. Zhang
    Abstract Aim:, To investigate the effect of increases in extracellular Ca2+ entry produced by the L-type Ca2+ channel agonist FPL-64176 (FPL) upon acute atrial arrhythmogenesis in intact Langendorff-perfused mouse hearts and its dependence upon diastolic Ca2+ release from sarcoplasmic reticular Ca2+ stores. Methods:, Confocal microscope studies of Fluo-3 fluorescence in isolated atrial myocytes were performed in parallel with electrophysiological examination of Langendorff-perfused mouse hearts. Results:, Atrial myocytes stimulated at 1 Hz and exposed to FPL (0.1 ,m) initially showed (<10 min) frequent, often multiple, diastolic peaks following the evoked Ca2+ transients whose amplitudes remained close to control values. With continued pacing (>10 min) this reverted to a regular pattern of evoked transients with increased amplitudes but in which diastolic peaks were absent. Higher FPL concentrations (1.0 ,m) produced sustained and irregular patterns of cytosolic Ca2+ activity, independent of pacing. Nifedipine (0.5 ,m), and caffeine (1.0 mm) and cyclopiazonic acid (CPA) (0.15 ,m) pre-treatments respectively produced immediate and gradual reductions in the F/F0 peaks. Such nifedipine and caffeine, or CPA pre-treatments, abolished, or reduced, the effects of 0.1 and 1.0 ,m FPL on cytosolic Ca2+ signals. FPL (1.0 ,m) increased the incidence of atrial tachycardia and fibrillation in intact Langendorff-perfused hearts without altering atrial effective refractory periods. These effects were inhibited by nifedipine and caffeine, and reduced by CPA. Conclusion:, Enhanced extracellular Ca2+ entry exerts acute atrial arrhythmogenic effects that is nevertheless dependent upon diastolic Ca2+ release. These findings complement reports that associate established, chronic, atrial arrhythmogenesis with decreased overall inward Ca2+ current. [source]


    Roles of the actin-binding proteins in intracellular Ca2+ signalling

    ACTA PHYSIOLOGICA, Issue 1 2009
    J. T. Chun
    Abstract Starfish oocytes undergo massive intracellular Ca2+ signalling during meiotic maturation and fertilization. Although the igniting stimulus of Ca2+ mobilization may differ in different cell contexts, its final leverage is usually the Ca2+ -releasing second messengers such as InsP3, cADPr and NAADP. The general scheme of intracellular Ca2+ release is that the corresponding receptors for these molecules serve as ion channels to release free Ca2+ from its internal stores such as the lumen of the endoplasmic reticulum. However, a growing body of evidence has suggested that intracellular Ca2+ release can be strongly modulated by the actin cytoskeleton. Although it is known that Ca2+ contributes to remodelling of the actin cytoskeleton, whether the actin cytoskeleton modulates Ca2+ signalling in return has not been much explored. An emerging candidate to answer to this reciprocal causality of Ca2+ and the actin cytoskeleton may be actin-binding proteins. In this review, we discuss how the actin cytoskeleton may fit into the known mechanisms of intracellular Ca2+ release, and propose two models to explain the experimental data. [source]


    When is high-Ca2+ microdomain required for mitochondrial Ca2+ uptake?,

    ACTA PHYSIOLOGICA, Issue 1 2009
    A. Spät
    Abstract Ca2+ release from IP3 -sensitive stores in the endoplasmic reticulum (ER) induced by Ca2+ -mobilizing agonists generates high-Ca2+ microdomains between ER vesicles and neighbouring mitochondria. Here we present a model that describes when such microdomains are required and when submicromolar [Ca2+] is sufficient for mitochondrial Ca2+ uptake. Mitochondrial Ca2+ uptake rate in angiotensin II-stimulated H295R adrenocortical cells correlates with the proximity between ER vesicles and the mitochondrion, reflecting the uptake promoting effect of high-Ca2+ peri-mitochondrial microdomains. Silencing or inhibition of p38 mitogen-activated protein kinase (MAPK) or inhibition of the novel isoforms of protein kinase C enhances mitochondrial Ca2+ uptake and abolishes the positive correlation between Ca2+ uptake and ER-mitochondrion proximity. Inhibition of protein phosphatases attenuates mitochondrial Ca2+ uptake and also abolishes its positive correlation with ER-mitochondrion proximity. We postulate that during IP3 -induced Ca2+ release, Ca2+ uptake is confined to ER-close mitochondria, because of the simultaneous activation of the protein kinases. Attenuation of Ca2+ uptake prevents Ca2+ overload of mitochondria and thus protects the cell against apoptosis. On the other hand, all the mitochondria accumulate Ca2+ at a non-inhibited rate during physiological Ca2+ influx through the plasma membrane. Membrane potential is higher in ER-distant mitochondria, providing a bigger driving force for Ca2+ uptake. Our model explains why comparable mitochondrial Ca2+ signals are formed in response to K+ and angiotensin II (equipotent in respect to global cytosolic Ca2+ signals), although only the latter generates high-Ca2+ microdomains. [source]


    Platelet-derived growth factor receptors expressed in response to injury of differentiated vascular smooth muscle in vitro: effects on Ca2+ and growth signals

    ACTA PHYSIOLOGICA, Issue 2 2001
    A. Lindqvist
    Vascular smooth muscle cells (VSMCs) in the intact vascular wall are differentiated for contraction, whereas the response to vascular injury involves transition towards a synthetic phenotype, with increased tendency for proliferation. Platelet-derived growth factor (PDGF) is thought to be important for this process. We investigated expression and functional coupling of PDGF receptors (PDGFRs) , and , in rat tail arterial rings kept in organ culture, in order to capture early events in the phenotypic transition. In freshly dissected rings no PDGFR immunoreactivity was found in medial VSMCs, whereas PDGFR , was detected in nerve fibres. After organ culture for 1,4 days PDGFR , and , as well as phospholipase C,2 (PLC,2), known to couple to PDGFR, were expressed in VSMCs within 100 ,m of the cut ends. Calponin, a marker for the contractile phenotype, was decreased near the injured area, suggesting that cells were in transition towards synthetic phenotype. In these cells, which showed functional Ca2+ -release from the sarcoplasmic reticulum, PDGF-AB (100 ng mL,1) had no effect on [Ca2+]i, whereas cultured VSMCs obtained from explants of rat tail arterial rings responded to PDGF-AB with an increase in [Ca2+]i. However, PDGFR within the cultured rings coupled to growth signalling pathways, as PDGF-AB caused a tyrphostin AG1295-sensitive activation of extracellular signal-regulated kinases 1 and 2 and of [3H]-thymidine incorporation. Thus, early expression of PDGFR in VSMC adjacent to sites of vascular injury coincides with signs of dedifferentiation. These receptors couple to growth signalling, but do not activate intracellular Ca2+ release. [source]


    Visualization of stochastic Ca2+ signals in the formed somites during the early segmentation period in intact, normally developing zebrafish embryos

    DEVELOPMENT GROWTH & DIFFERENTIATION, Issue 7 2009
    Christina F. Leung
    Localized Ca2+ signals were consistently visualized in the formed somites of intact zebrafish embryos during the early segmentation period. Unlike the regular process of somitogenesis, these signals were stochastic in nature with respect to time and location. They did, however, occur predominantly at the medial and lateral boundaries within the formed somites. Embryos were treated with modulators of [Ca2+]i to explore the signal generation mechanism and possible developmental function of the stochastic transients. Blocking elements in the phosphoinositol pathway eliminated the stochastic signals but had no obvious effect, stochastic or otherwise, on the formed somites. Such treatments did, however, result in the subsequently formed somites being longer in the mediolateral dimension. Targeted uncaging of buffer (diazo-2) or Ca2+ (NP-ethyleneglycoltetraacetic acid [EGTA]) in the presomitic mesoderm, resulted in a regular mediolateral lengthening and shortening, respectively, of subsequently formed somites. These data suggest a requirement for IP3 receptor-mediated Ca2+ release during convergence cell movements in the presomitic mesoderm, which appears to have a distinct function from that of the IP3 receptor-mediated stochastic Ca2+ signaling in the formed somites. [source]


    Survival of mammalian B104 cells following neurite transection at different locations depends on somal Ca2+ concentration

    DEVELOPMENTAL NEUROBIOLOGY, Issue 2 2004
    Soonmoon Yoo
    Abstract We report that cell survival after neurite transection in a mammalian neuronal model (cultured B104 cells) critically depends on somal [Ca2+]i, a novel result that reconciles separate long-standing observations that somal survival decreases with more-proximal axonal transections and that increased somal Ca2+ is cytotoxic. Using fluorescence microscopy, we demonstrate that extracellular Ca2+ at the site of plasmalemmal transection is necessary to form a plasmalemmal barrier, and that other divalent ions (Ba2+, Mg2+) do not play a major role. We also show that extracellular Ca2+, rather than injury per se, initiates the formation of a plasmalemmal barrier and that a transient increase in somal [Ca2+]i significantly decreases the percentage of cells that survive neurite transection. Furthermore, we show that the increased somal [Ca2+]i and decreased cell survival following proximal transections are not due to less frequent or slower plasmalemmal sealing or Ca2+ entry through plasmalemmal Na+ and Ca2+ channels. Rather, the increased somal [Ca2+]i and lethality of proximal neurite injuries may be due to the decreased path length/increased diameter for Ca2+ entering the transection site to reach the soma. A ryanodine block of Ca2+ release from internal stores before transection has no effect on cell survival; however, a ryanodine- or thapsigargin-induced buildup of somal [Ca2+]i before transection markedly reduces cell survival, suggesting a minor involvement of Ca2+ -induced release from internal stores. Finally, we show that cell survival following proximal injuries can be enhanced by increasing intracellular Ca2+ buffering capacity with BAPTA to prevent the increase in somal [Ca2+]i. © 2004 Wiley Periodicals, Inc. J Neurobiol 60: 137,153, 2004 [source]


    Econazole-induced Ca2+ fluxes and apoptosis in human oral cancer cells

    DRUG DEVELOPMENT RESEARCH, Issue 4 2010
    Daih-Huang Kuo
    Abstract The effect of econazole on cytosolic free Ca2+ concentrations ([Ca2+]i) and viability was explored in human oral cancer cells (OC2), using the fluorescent dyes fura-2 and WST-1, respectively. Econazole at concentrations of >1,µM increased [Ca2+]i in a concentration-dependent manner. The Ca2+ signal was reduced partly by removing extracellular Ca2+. The econazole-induced Ca2+ influx was sensitive to blockade of aristolochic acid (phospholipase A2 inhibitor) and GF109203X (PKC inhibitor). In Ca2+ -free medium, after treatment with 1,µM thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor), 30,µM econazole failed to induce a [Ca2+]i rise. Inhibition of phospholipase C with 2,µM U73122 substantially suppressed econazole-induced [Ca2+]i rise. At concentrations of 5,70,µM econazole killed cells in a concentration-dependent manner. The cytotoxic effect of 50,µM econazole was enhanced by prechelating cytosolic Ca2+ with 1,2-bis(2-aminophenoxy)ethane-N,N,N,,N,-tetraacetic acid (BAPTA). The ERK MAPK inhibitor, PD98059 (10,µM), also enhanced 20,µM econazole-induced cell death. Propidium iodide staining data suggest that econazole induced apoptosis between concentrations of 10,70,µM. Collectively, in OC2 cells, econazole induced [Ca2+]i rises by causing Ca2+ release from the endoplasmic reticulum and Ca2+ influx from phospholipase A2/PKC-regulated Ca2+ channels. Furthermore, econazole caused cell death appeared to be regulated by ERK MAPK. Drug Dev Res 71: 240,248, 2010. © 2010 Wiley-Liss, Inc. [source]


    Effect of capsaicin on Ca2+ fluxes in Madin-Darby canine renal tubular cells

    DRUG DEVELOPMENT RESEARCH, Issue 2 2010
    Jeng-Hsien Yeh
    Abstract The effect of capsaicin, a transient receptor potential vanniloid-1 (TRPV1) receptor agonist, on cytosolic free Ca2+ concentrations ([Ca2+]i) in Madin Darby canine kidney (MDCK) cells is unclear. This study explored whether capsaicin changed basal [Ca2+]i levels in suspended MDCK cells by using fura-2 as a Ca2+ -sensitive fluorescent dye. Capsaicin at concentrations between 10,100,µM increased [Ca2+]i in a concentration-dependent manner. The Ca2+ signal was reduced by 80% by removing extracellular Ca2+. Capsacin induced Mn2+ influx, leading to quench of fura-2 fluorescence suggesting Ca2+ influx. This Ca2+ influx was inhibited by phospholipase A2 inhibitor aristolochic acid and the non-selective Ca2+ entry blocker La3+, but not by store-operated Ca2+ channel blockers nifedipine, econazole, and SK&F96365, and protein kinase C/A modulators. In Ca2+ -free medium, pretreatment with the endoplasmic reticulum Ca2+ pump inhibitor thapsigargin abolished capsaicin-induced Ca2+ release. Conversely, pretreatment with capsaicin partly reduced thapsigargin-induced [Ca2+]i rise. Inhibition of phospholipase C with U73122 did not alter capsaicin-induced [Ca2+]i rise. The TRPV1 receptor antagonist capsazepine also induced significant Ca2+ entry and Ca2+ release. Collectively, in MDCK cells, capsaicin induced [Ca2+]i rises by causing phospholipase C-independent Ca2+ release from the endoplasmic reticulum and Ca2+ influx via phospholipase A2-regulated, La3+ -sensitive Ca2+ channels in a manner dissociated from stimulation of TRPV1 receptors. Drug Dev Res, 2009. © 2009 Wiley-Liss, Inc. [source]


    Nonylphenol-induced cytosolic Ca2+ elevation and death in renal tubular cells

    DRUG DEVELOPMENT RESEARCH, Issue 5 2009
    Jeng-Yu Tsai
    Abstract Nonylphenol is an environmental endocrine disrupter. The effect of nonylphenol on intracellular free Ca2+ levels ([Ca2+]i) and viability in Madin-Darby canine kidney (MDCK) cells was explored. Nonylphenol increased [Ca2+]i in a concentration-dependent manner (EC50,0.8,,M). Nonylphenol-induced Mn2+ entry demonstrated Ca2+ influx and removal of extracellular Ca2+ partly decreased the [Ca2+]i rise. The [Ca2+]i rise was inhibited by the protein kinase C activator, phorbol 13-myristate acetate (PMA) but not by L-type Ca2+ channel blockers. In Ca2+ -free medium, nonylphenol-induced [Ca2+]i rise was partly inhibited by pretreatment with 1,,M thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor). Conversely, nonylphenol pretreatment abolished thapsigargin-induced Ca2+ release. Nonylphenol-induced Ca2+ release was unaltered by inhibition of phospholipase C. At concentrations of 5,100,,M, nonylphenol killed cells in a concentration-dependent manner. The cytotoxic effect of 100,,M nonylphenol was not affected by preventing [Ca2+]i rises with BAPTA/AM. Collectively, this study shows that nonylphenol induced [Ca2+]i increase in MDCK cells via evoking Ca2+ entry through protein kinase C-regulated Ca2+ channels, and releasing Ca2+ from endoplasmic reticulum and other stores in a phospholipase C-independent manner. Nonylphenol also killed cells in a Ca2+ -independent fashion. Drug Dev Res, 2009. © 2009 Wiley-Liss, Inc. [source]


    Pharmacological characterization of the rat brain P2Y1 receptor expressed in HEK293 cells: Ca2+ signaling and receptor regulation

    DRUG DEVELOPMENT RESEARCH, Issue 2-3 2001
    Christian Vöhringer
    Abstract The increasing number of ATP- and UTP-sensitive membrane receptors identified by cloning represent either ligand-activated ion channels (P2X) or G-protein-coupled receptors (P2Y). Adenosine, ATP, and UTP have potential application in the management of pain, cancer, and some cardiovascular and pulmonary diseases and are also involved in inflammatory processes in the brain. Therefore, P2Y receptors seem to be promising therapeutic targets. Multiple P2Y receptor subtypes, classified pharmacologically, are mainly linked to activation of phospholipase C (PLC). The present study further characterizes the rat brain P2Y1 wild-type receptor (rP2Y1 -wt) and the eGFP-tagged receptor (rP2Y1 -eGFP) stably expressed in HEK293 cells, thus shedding light on receptor regulation. Both receptors were analyzed by measuring Ca2+ responses in single cells. The rP2Y1 -eGFP receptor was coupled to Ca2+ release like the rP2Y1 -wt receptor. Experiments using the PLC inhibitor U73122 confirm the functional activation of PLC, through rP2Y1 -eGFP activation. The P2Y1 -selective agonists 2-MeSADP and 2-MeSATP were most potent at the heterologously expressed receptors. We found a ligand selectivity typical for P2Y1 receptors (2-MeSADP = 2-MeSATP > ADP > ATP,S, ATP >> UTP). Fluorescence microscopy and Ca2+ measurements confirm that the rP2Y1-eGFP receptor during homologous desensitization is subjected to processes leading to agonist-induced internalization. The kinetics of receptor resensitization were also examined. Therefore, rP2Y1 -eGFP expressing cells are suitable to determine the physiological P2Y1 receptor signaling pathway and can be a helpful tool to identify drugs acting at P2Y1 receptors as possible therapeutic targets. Drug Dev. Res. 53:172,179, 2001. © 2001 Wiley-Liss, Inc. [source]


    AMPA and metabotropic glutamate receptors cooperatively generate inspiratory-like depolarization in mouse respiratory neurons in vitro

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2008
    Ryland W. Pace
    Abstract Excitatory transmission mediated by AMPA receptors is critical for respiratory rhythm generation. However, the role of AMPA receptors has not been fully explored. Here we tested the functional role of AMPA receptors in inspiratory neurons of the neonatal mouse preBötzinger complex (preBötC) using an in vitro slice model that retains active respiratory function. Immediately before and during inspiration, preBötC neurons displayed envelopes of depolarization, dubbed inspiratory drive potentials, that required AMPA receptors but largely depended on the Ca2+ -activated non-specific cation current (ICAN). We showed that AMPA receptor-mediated depolarization opened voltage-gated Ca2+ channels to directly evoke ICAN. Inositol 1,4,5-trisphosphate receptor-mediated intracellular Ca2+ release also evoked ICAN. Inositol 1,4,5-trisphosphate receptors acted downstream of group I metabotropic glutamate receptor activity but, here too, AMPA receptor-mediated Ca2+ influx was essential to trigger the metabotropic glutamate receptor contribution to inspiratory drive potential generation. This study helps to elucidate the role of excitatory transmission in respiratory rhythm generation in vitro. AMPA receptors in preBötC neurons initiate convergent signaling pathways that evoke post-synaptic ICAN, which underlies inspiratory drive potentials. The coupling of AMPA receptors with ICAN suggests that latent burst-generating intrinsic conductances are recruited by excitatory synaptic interactions among preBötC neurons in the context of respiratory network activity in vitro, exemplifying a rhythmogenic mechanism based on emergent properties of the network. [source]


    IP3 receptor in the hair cells of frog semicircular canal and its possible functional role

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2006
    Maria Lisa Rossi
    Abstract The presence and functional role of inositol trisphosphate receptors (IP3R) was investigated by electrophysiology and immunohistochemistry in hair cells from the frog semicircular canal. Intracellular recordings were performed from single fibres of the posterior canal in the isolated, intact frog labyrinth, at rest and during rotation, in the presence of IP3 receptor inhibitors and drugs known to produce Ca2+ release from the internal stores or to increase IP3 production. Hair cell immunolabelling for IP3 receptor was performed by standard procedures. The drug 2-aminoethoxydiphenyl borate (2APB), an IP3 receptor inhibitor, produced a marked decrease of mEPSP and spike frequency at low concentration (0.1 mm), without affecting mEPSP size or time course. At high concentration (1 mm), 2APB is reported to block the sarcoplasmic-endoplasmic reticulum Ca2+ -ATPase (SERCA pump) and increase [Ca2+]i; at the labyrinthine cytoneural junction, it greatly enhanced the resting and mechanically evoked sensory discharge frequency. The selective agonist of group I metabotropic glutamate receptors (RS)-3,5-dihydroxyphenylglycine (DHPG, 0.6 mm), produced a transient increase in resting mEPSP and spike frequency at the cytoneural junction, with no effects on mEPSP shape or amplitude. Pretreatment with cyclopiazonic acid (CPA, 0.1 mm), a SERCA pump inhibitor, prevented the facilitatory effect of both 2APB and DHPG, suggesting a link between Ca2+ release from intracellular stores and quantal emission. Consistently, diffuse immunoreactivity for IP3 receptors was observed in posterior canal hair cells. Our results indicate the presence and a possibly relevant functional role of IP3-sensitive stores in controlling [Ca2+]i and modulating the vestibular discharge. [source]


    Dynamics of Ca2+ and Na+ in the dendrites of mouse cerebellar Purkinje cells evoked by parallel fibre stimulation

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 10 2003
    Akinori Kuruma
    Abstract Ca2+ and Na+ play important roles in neurons, such as in synaptic plasticity. Their concentrations in neurons change dynamically in response to synaptic inputs, but their kinetics have not been compared directly. Here, we show the mechanisms and dynamics of Ca2+ and Na+ transients by simultaneous monitoring in Purkinje cell dendrites in mouse cerebellar slices. High frequency parallel fibre stimulation (50 Hz, 3,50-times) depolarized Purkinje cells, and Ca2+ transients were observed at the anatomically expected sites. The magnitude of the Ca2+ transients increased linearly with increasing numbers of parallel fibre inputs. With 50 stimuli, Ca2+ transients lasted for seconds, and the peak [Ca2+] reached ,100 µm, which was much higher than that reported previously, although it was still confined to a part of the dendrite. In contrast, Na+ transients were sustained for tens of seconds and diffused away from the stimulated site. Pharmacological interventions revealed that Na+ influx through ,-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and Ca2+ influx through P-type Ca channels were essential players, that AMPA receptors did not operate as a Ca2+ influx pathway and that Ca2+ release from intracellular stores through inositol trisphosphate receptors or ryanodine receptors did not contribute greatly to the large Ca2+ transients. [source]


    Caffeine administration results in greater tension development in previously fatigued canine muscle in situ

    EXPERIMENTAL PHYSIOLOGY, Issue 6 2005
    Richard A. Howlett
    In isolated single skeletal myocytes undergoing long-term fatiguing contractions, caffeine (CAF) can result in nearly immediate restoration of generated tension to near-prefatigue levels by increasing Ca2+ release via activation of sarcoplasmic reticulum release channels. This study tested whether arterial CAF infusion (>5 mm) would cause a similar rapid restoration of tetanic isometric tension during contractions to fatigue in perfused canine hindlimb muscle in situ. Tetanic contractions were elicited by electrical stimulation (200 ms trains, 50 Hz, 1 contraction s,1), and biopsies were taken from the muscle at rest and during contractions: (1) following the onset of fatigue (tension ,60% of initial value); and (2) following CAF administration. Resting muscle ATP, PCr and lactate contents were 25.2 ± 0.4, 76.9 ± 3.3 and 14.4 ± 3.3 mmol (kg dry weight),1, respectively. At fatigue, generated tetanic tension was 61.1 ± 6.9% of initial contractions. There was a small but statistically significant recovery of tetanic tension (64.9 ± 6.6% of initial value) with CAF infusion, after which the muscle showed incomplete relaxation. At fatigue, muscle ATP and PCr contents had fallen significantly (P < 0.05) to 18.1 ± 1.1 and 18.9 ± 2.1 mmol (kg dry weight),1, respectively, and lactate content had increased significantly to 27.7 ± 5.4 mmol (kg dry weight),1. Following CAF, skeletal muscle ATP and PCr contents were significantly lower than corresponding fatigue values (15.0 ± 1.3 and 10.9 ± 2.2 mmol (kg dry weight),1, respectively), while lactate was unchanged (22.2 ± 3.9 mmol (kg dry weight),1). These results demonstrate that caffeine can result in a small, but statistically significant, recovery of isometric tension in fatigued canine hindlimb muscle in situ, although not nearly to the same degree as seen in isolated single muscle fibres. This suggests that, in this in situ isolated whole muscle model, alteration of Ca2+ metabolism is probably only one cause of fatigue. [source]


    Inhibition of carbachol-evoked oscillatory currents by the NO donor sodium nitroprusside in guinea-pig ileal myocytes

    EXPERIMENTAL PHYSIOLOGY, Issue 4 2005
    Seung-Soo Chung
    The effect of sodium nitroprusside (SNP) on carbachol (CCh)-evoked inward cationic current (Icat) oscillations in guinea-pig ileal longitudinal myocytes was investigated using the whole-cell patch-clamp technique and permeabilized longitudinal muscle strips. SNP (10 ,m) completely inhibited Icat oscillations evoked by 1 ,m CCh. 1H-(1,2,4) Oxadiazole [4,3-a] quinoxaline-1-one (ODQ; 1 ,m) almost completely prevented the inhibitory effect of SNP on Icat oscillations. 8-Bromo-guanosine 3,,5,-cyclic monophosphate (8-Br-cGMP; 30 ,m) in the pipette solution completely abolished Icat oscillations. However, a pipette solution containing Rp-8-Br-cGMP (30 ,m) almost completely abolished the inhibitory effect of SNP on Icat oscillations. When the intracellular calcium concentration ([Ca2+]i) was held at a resting level using BAPTA (10 mm) and Ca2+ (4.6 ,m) in the pipette solution, CCh (1 ,m) evoked only the sustained component of Icat without any oscillations and SNP did not affect the current. A high concentration of inositol 1,4,5-trisphosphate (IP3; 30 ,m) in the patch pipette solutions significantly reduced the inhibitory effect of SNP (10 ,m) on Icat oscillations. SNP significantly inhibited the Ca2+ release evoked by either CCh or IP3 but not by caffeine in permeabilized preparations of longitudinal muscle strips. These results suggest that the inhibitory effects of SNP on Icat oscillations are mediated, in part, by functional modulation of the IP3 receptor, and not by the inhibition of cationic channels themselves or by muscarinic receptors in the plasma membrane. This inhibition seems to be mediated by an increased cGMP concentration in a protein kinase G-dependent manner. [source]


    The Secretory Response of the Rat Colon to the Flavonol Quercetin is Dependent on Ca2+ -Calmodulin

    EXPERIMENTAL PHYSIOLOGY, Issue 3 2000
    R. Cermak
    The dietary flavonol quercetin induces chloride secretion in rat intestine. To clarify the underlying mechanisms, experiments were performed in Ussing chambers with tissue from rat proximal and distal colon. Quercetin induced an increase in short-circuit current (Isc), which was largely independent of submucosal neurons, as it was not affected by the neurotoxin tetrodotoxin. The effect of quercetin was blocked by the calmodulin antagonists trifluoperazine and ophiobolin A and was diminished by a blocker of Ca2+ release from intracellular stores (TMB-8), whereas the muscarinic receptor antagonist atropine was ineffective. The quercetin-induced Isc was abolished in Ca2+ -free solution. The flavonol was able to further increase Isc after maximal stimulation of the cAMP pathway by forskolin. The Isc increase by the flavonol was differently affected by two analogous phosphodiesterase inhibitors. Whereas 3-isobutyl-1-methylxanthine (IBMX) antagonized the effect of quercetin, 8-methoxymethyl-IBMX had no effect. Both phosphodiesterase inhibitors similarly influenced the Isc increase induced by forskolin. These results indicate that the chloride secretion induced by quercetin in rat colon depends on Ca2+ and calmodulin. The cAMP pathway and inhibition of phosphodiesterase appear not to be responsible for the secretory activity of the flavonol. [source]


    Voltage- and Ca2+ -activated potassium channels in Ca2+ store control Ca2+ release

    FEBS JOURNAL, Issue 15 2006
    Masayuki Yamashita
    Ca2+ release from Ca2+ stores is a ,quantal' process; it terminates after a rapid release of stored Ca2+. To explain the quantal nature, it has been supposed that a decrease in luminal Ca2+ acts as a ,brake' on store release. However, the mechanism for the attenuation of Ca2+ efflux remains unknown. We show that Ca2+ release is controlled by voltage- and Ca2+ -activated potassium channels in the Ca2+ store. The potassium channel was identified as the big or maxi-K (BK)-type, and was activated by positive shifts in luminal potential and luminal Ca2+ increases, as revealed by patch-clamp recordings from an exposed nuclear envelope. The blockage or closure of the store BK channel due to Ca2+ efflux developed lumen-negative potentials, as revealed with an organelle-specific voltage-sensitive dye [DiOC5(3); 3,3'-dipentyloxacarbocyanine iodide], and suppressed Ca2+ release. The store BK channels are reactivated by Ca2+ uptake by Ca2+ pumps regeneratively with K+ entry to allow repetitive Ca2+ release. Indeed, the luminal potential oscillated bistably by ,45 mV in amplitude. Our study suggests that Ca2+ efflux-induced store BK channel closures attenuate Ca2+ release with decreases in counter-influx of K+. [source]


    The role of calcium on protein secretion of the albumen gland in Helisoma duryi (Gastropoda)

    INVERTEBRATE BIOLOGY, Issue 4 2004
    Lana Kiehn
    Abstract. The albumen gland of the freshwater pulmonate snail Helisoma duryi produces and secretes the perivitelline fluid, which coats fertilized eggs and provides nutrients to the developing embryos. It is known that perivitelline fluid secretion is stimulated by dopamine through the activation of a dopamine D1 -like receptor, which in turn stimulates cAMP production leading to the secretion of perivitelline fluid. This paper examines the glandular release of perivitelline fluid and provides evidence for the role of Ca2+ in the regulated secretion of perivitelline fluid based on protein secretion experiments and inositol 1,4,5-trisphosphate assays. Dopamine-stimulated protein secretion by the albumen gland is reduced in Ca2+ -free medium or in the presence of plasma membrane Ca2+ channel blockers, although the Ca2+ channel subtype involved is unclear. In addition, dopamine-stimulated protein secretion does not directly involve phospholipase C-generated signaling pathways and Ca2+ release from intracellular stores. Sarcoplasmic/endoplasmic reticulum Ca2+ -ATPase inhibitors had little effect on protein secretion when applied alone; however, they potentiated dopamine-stimulated protein secretion. Dantrolene, an inhibitor of ryanodine receptors, 8-(N,N-diethylamino)-octyl-3,4,5-trimethoxybenzoate hydrochloride, a nonspecific inhibitor of intracellular Ca2+ channels, and 2-aminoethyldiphenylborate, an inhibitor of inositol 1,4,5-trisphosphate receptors, did not suppress protein secretion, suggesting Ca2+ release from internal stores does not directly regulate protein secretion. Thus, the influx of Ca2+ from the extracellular space appears to be the major pathway mediating protein secretion by the albumen gland. The results are discussed with respect to the role of Ca2+ in controlling exocytosis of proteins from the albumen gland secretory cells. [source]


    A Vacuolar ATPase Inhibitor, FR167356, Prevents Bone Resorption in Ovariectomized Rats With High Potency and Specificity: Potential for Clinical Application,

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 9 2005
    Kazuaki Niikura MS
    Abstract FR167356, a novel inhibitor of vacuolar ATPase, has high potency against osteoclast V-ATPase and low potency against lysosomal V-ATPase. FR167356 is the first compound of this nature to be tested. It has the potential to be useful for clinical application. Introduction: It has been suggested that the key issue regarding the therapeutic usefulness of V-ATPase inhibitors is their selectivity. Materials and Methods: In in vitro and in vivo studies, we compared FR167356 with other vacuolar ATPase (V-ATPase) inhibitors, bafilomycin A1 and SB242784. H+ transport by various membrane vesicles was assayed by measuring uptake of acridine orange. Inhibitory activity against in vitro bone resorption was examined by measuring the Ca2+ release from cultured calvariae. In vivo, hypercalcemia was induced by retinoic acid in thyroparathyroidectomized-ovariectomized rats, and the effect on serum Ca2+ level was assessed. Ovariectomized rats were treated with FR167356 or SB242784. One week after surgery, free deoxypyridinoline levels in 24-h urine samples, which were collected from 6 h after administration of FR167356, were measured by ELISA. After 4 weeks of treatment, plasma biochemical parameters were analyzed. BMD of the distal femur metaphysis was measured with pQCT. Histomorphometric analysis of the proximal tibias was performed. Blood gases of rats treated with FR167356 were measured with a blood gas analyzer for estimating the effect of FR167356 on in vivo function of renal V-ATPase. Results: FR167356, which is distinctly different from other V-ATPase inhibitors, has a high potency against osteoclast V-ATPase and low potency against lysosomal V-ATPase. Similarly, FR167356 inhibited bone resorption in vitro when stimulated by PTH, IL-1, and IL-6. FR167356 reduced retinoic acid-induced hypercalcemia in thyroparathyroidectomized-ovariectomized rats in a dose-dependent manner. Moreover, FR167356 was shown to restore BMD of ovariectomized rats caused by the inhibition of bone resorption. Ovariectomized rats treated with FR167356 did not show adverse symptoms, whereas SB242784 caused a decrease in body weight gain and significant changes in two plasma biochemical parameters. Interestingly, FR167356 treatment did not affect blood acid-base balance; however, FR167356 inhibited renal V-ATPase with a similar potency as for osteoclast V-ATPase inhibition. Conclusion: Comparison of FR167356 with SB242784 implies that the characteristics of FR167356 may be more appropriate for clinical application as a V-ATPase inhibitor. [source]


    Dual Mechanism of Intercellular Communication in HOBIT Osteoblastic Cells: A Role for Gap-Junctional Hemichannels

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 8 2001
    Milena Romanello
    Abstract Intercellular communication allows tissue coordination of cell metabolism and sensitivity to extracellular stimuli. Paracrine stimulation and cell-to-cell coupling through gap junctions induce the formation of complex cellular networks, which favors the intercellular exchange of nutrients and second messengers. Intercellular Ca2+ signaling was investigated in human osteoblast-like initial transfectant (HOBIT) cells, a human osteoblastic cell line in which cells retain most of the osteoblastic differentiation markers. HOBIT cells express connexin43 (Cx43) clustered at the cell-to-cell boundary and display functional intercellular coupling as assessed by the intercellular transfer of Lucifer yellow. Mechanical stimulation of a single cell induced a wave of increased Ca2+ that was radially propagated to surrounding cells. Treatment of cells with thapsigargin blocked mechanically induced signal propagation. Intercellular Ca2+ spreading and dye transfer were inhibited by 18,-glycyrrhetinic acid (18-GA), showing the involvement of gap junctions in signal propagation. Pretreatment of cells with suramin or with apyrase decreased the extent of wave propagation, suggesting that ATP-mediated paracrine stimulation contribute to cell-to-cell signaling. The functional expression of gap-junctional hemichannels was evidenced in experiments of Mn2+ quenching, extracellular dye uptake, and intracellular Ca2+ release, activated by uptake of inositol 1,4,5-trisphosphate (InsP3) from the external medium. Gap-junctional hemichannels were activated by low extracellular Ca2+ concentrations and inhibited by 18-GA. A role for Cx hemichannels in adenosine triphosphate (ATP) release and paracrine stimulation is suggested. [source]


    Basic Fibroblast Growth Factor Stimulates Vascular Endothelial Growth Factor Release in Osteoblasts: Divergent Regulation by p42/p44 Mitogen-Activated Protein Kinase and p38 Mitogen-Activated Protein Kinase

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 12 2000
    Haruhiko Tokuda
    Abstract We previously showed that basic fibroblast growth factor (bFGF) activates p38 mitogen-activated protein (MAP) kinase via Ca2+ mobilization, resulting in interleukin-6 (IL-6) synthesis in osteoblast-like MC3T3-E1 cells. In the present study, we investigated the effect of bFGF on the release of vascular endothelial growth factor (VEGF) in these cells. bFGF stimulated VEGF release dose dependently in the range between 10 and 100 ng/ml. SB203580, an inhibitor of p38 MAP kinase, markedly enhanced the bFGF-induced VEGF release. bFGF induced the phosphorylation of both p42/p44 MAP kinase and p38 MAP kinase. PD98059, an inhibitor of upstream kinase of p42/p44 MAP kinase, reduced the VEGF release. SB203580 enhanced the phosphorylation of p42/p44 MAP kinase induced by bFGF. The enhancement by SB203580 of the bFGF-stimulated VEGF release was suppressed by PD98059. The depletion of extracellular Ca2+ by [ethylenebis-(oxyethylenenitrilo)]tetracetic acid (EGTA) or 1,2-bis-(O -aminophinoxy)-ethane- N,N,N,N -tetracetic acid tetracetoxymethyl ester (BAPTA/AM), a chelator of intracellular Ca2+, suppressed the bFGF-induced VEGF release. A23187, a Ca ionophore, or thapsigargin, known to induce Ca2+ release from intracellular Ca2+ store, stimulated the release of VEGF by itself. A23187 induced the phosphorylation of p42/p44 MAP kinase and p38 MAP kinase. PD98059 suppressed the VEGF release induced by A23187. SB203580 had little effect on either A23187-induced VEGF release or the phosphorylation of p42/p44 MAP kinase by A23187. These results strongly suggest that bFGF stimulates VEGF release through p42/p44 MAP kinase in osteoblasts and that the VEGF release is negatively regulated by bFGF-activated p38 MAP kinase. [source]


    Mitochondria and Ca2+ signaling

    JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 3 2000
    Emil C. Toescu
    Abstract Mitochondria play a central role in cell homeostasis. Amongst others, one of the important functions of mitochondria is to integrate its metabolic response with one of the major signaling pathways - the Ca2+ signaling. Mitochondria are capable to sense the levels of cytosolic Ca2+ and generate mitochondrial Ca2+ responses. Specific mechanisms for both Ca2+ uptake and Ca2+ release exist in the mitochondrial membranes. In turn, the mitochondrial Ca2+ signals are able to produce changes in the mitochondrial function and metabolism, which provide the required level of functional integration. This essay reviews briefly the current available information regarding the mitochondrial Ca2+ transport systems and some of the functional consequences of mitochondrial Ca2+ uptake [source]


    Agonist-induced calcium entry correlates with STIM1 translocation

    JOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2007
    Kehinde Ross
    The mechanisms of agonist-induced calcium entry (ACE) following depletion of intracellular calcium stores have not been fully established. We report here that calcium-independent phospholipase A (iPLA2) is required for robust Ca2+ entry in HaCaT keratinocytes following ATP or UTP stimulation. Lysophosphatidic acid (LPA), an unrelated agonist, evoked Ca2+ release without inducing robust Ca2+ entry. Both LPA and UTP induced the redistribution of STIM1 into puncta which localized to regions near or at the plasma membrane, as well as within the cytoplasm. Plasma membrane-associated STIM1 remained high for up to 10 min after UTP stimulation, whereas it had returned almost to baseline by that time point in LPA-stimulated cells. This correlated with faster reloading of the endoplasmic reticulum Ca2+ stores in LPA treated cells. Thus by differentially regulating store-refilling after agonist-mediated depletion, LPA and UTP may exert distinct effects on the duration of STIM1 localization at the plasma membrane, and thus, on the magnitude and duration of ACE. J. Cell. Physiol. 211: 569,576, 2007. © 2007 Wiley-Liss, Inc. [source]


    Effect of selenium-supplement on the calcium signaling in human endothelial cells,

    JOURNAL OF CELLULAR PHYSIOLOGY, Issue 1 2005
    Yi Zheng
    Intracellular Ca2+ signaling controls many cellular functions. Understanding its regulation by selenoproteins is essential for understanding the role of selenoproteins in regulating cell functions. The activity of thioredoxin reductase (TrxR), thioredoxin (Trx) content, and the activity of glutathione peroxidase (GPx) in the human endothelial cells cultured in selenium-supplemented medium (refer as Se+ cells) was found 70%, 40%, and 20% higher, respectively than those in the cells cultured in normal medium (refer as Se0 cells). The intracellular Ca2+ signaling initiated by inositol 1,4,5-trisphosphate (IP3), histamine, thapsigargin (TG), carbonyl cyanide p -(tri-fluoromethoxy) phenyl-hydrazone (FCCP), and cyclosporin A (CsA) was investigated in both Se+ and Se0 cells. It was interestingly found that the higher activity of selenoproteins reduced the sensitivity of IP3 receptor to the IP3 -triggered Ca2+ release from intracellular stores, but enhanced activation of the receptor-coupled phospholipase C in histamine-stimulated Se+ cells by showing much more generation of IP3 and higher elevation of cytosolic Ca2+. The higher selenoprotein activity also reduced susceptibility of the uniporter to the mitochondrial uncoupler, susceptibility of the permeability transition pore (PTP) to its inhibitor, and the vulnerability of endoplasmic reticulum (ER) Ca2+ -ATPase to its inhibitor in selenium-supplementing cells. The results suggest that cell calcium signaling is subjected to thiol-redox regulation by selenoproteins. © 2005 Wiley-Liss, Inc. [source]


    Increased CaV,1a expression with aging contributes to skeletal muscle weakness

    AGING CELL, Issue 5 2009
    Jackson R. Taylor
    Summary Ca2+ release from the sarcoplasmic reticulum (SR) into the cytosol is a crucial part of excitation,contraction (E-C) coupling. Excitation,contraction uncoupling, a deficit in Ca2+ release from the SR, is thought to be responsible for at least some of the loss in specific force observed in aging skeletal muscle. Excitation,contraction uncoupling may be caused by alterations in expression of the voltage-dependent calcium channel ,1s (CaV1.1) and ,1a (CaV,1a) subunits, both of which are necessary for E-C coupling to occur. While previous studies have found CaV1.1 expression declines in old rodents, CaV,1a expression has not been previously examined in aging models. Western blot analysis shows a substantial increase of CaV,1a expression over the full lifespan of Friend Virus B (FVB) mice. To examine the specific effects of CaV,1a overexpression, a CaV,1a -YFP plasmid was electroporated in vivo into young animals. The resulting increase in expression of CaV,1a corresponded to decline of CaV1.1 over the same time period. YFP fluorescence, used as a measure of CaV,1a -YFP expression in individual fibers, also showed an inverse relationship with charge movement, measured using the whole-cell patch-clamp technique. Specific force was significantly reduced in young CaV,1a -YFP electroporated muscle fibers compared with sham-electroporated, age-matched controls. siRNA interference of CaV,1a in young muscles reduced charge movement, while charge movement in old was restored to young control levels. These studies imply CaV,1a serves as both a positive and negative regulator CaV1.1 expression, and that endogenous overexpression of CaV,1a during old age may play a role in the loss of specific force. [source]


    Characterization of Ca2+ signaling pathways in mouse adrenal medullary chromaffin cells

    JOURNAL OF NEUROCHEMISTRY, Issue 5 2010
    Pei-Chun Wu
    J. Neurochem. (2010) 112, 1210,1222. Abstract In the present study, we characterized the Ca2+ responses and secretions induced by various secretagogues in mouse chromaffin cells. Activation of the acetylcholine receptor (AChR) by carbachol induced a transient intracellular Ca2+ concentration ([Ca2+]i) increase followed by two phases of [Ca2+]i decay and a burst of exocytic events. The contribution of the subtypes of AChRs to carbachol-induced responses was examined. Based on the results obtained by stimulating the cells with the nicotinic receptor (nAChR) agonist, 1,1-dimethyl-4-phenylpiperazinium iodide, high K+ and the effects of thapsigargin, it appears that activation of nAChRs induces an extracellular Ca2+ influx, which in turn activate Ca2+ -induced Ca2+ release via the ryanodine receptors. Muscarine, a muscarinic receptor (mAChRs) agonist, was found to induce [Ca2+]i oscillation and sustained catecholamine release, possibly by activation of both the receptor- and store-operated Ca2+ entry pathways. The RT-PCR results showed that mouse chromaffin cells are equipped with messages for multiple subtypes of AChRs, ryanodine receptors and all known components of the receptor- and store-operated Ca2+ entry. Furthermore, results obtained by directly monitoring endoplasmic reticulum (ER) and mitochondrial Ca2+ concentration and by disabling mitochondrial Ca2+ uptake suggest that the ER acts as a Ca2+ source, while the mitochondria acts as a Ca2+ sink. Our results show that both nAChRs and mAChRs contribute to the initial carbachol-induced [Ca2+]i increase which is further enhanced by the Ca2+ released from the ER mediated by Ca2+ -induced Ca2+ release and mAChR activation. This information on the Ca2+ signaling pathways should lay a good foundation for future studies using mouse chromaffin cells as a model system. [source]


    Mechanism of the persistent sodium current activator veratridine-evoked Ca2+ elevation: implication for epilepsy

    JOURNAL OF NEUROCHEMISTRY, Issue 3 2009
    Įdįm Fekete
    Abstract Although the role of Na+ in several aspects of Ca2+ regulation has already been shown, the exact mechanism of intracellular Ca2+ concentration ([Ca2+]i) increase resulting from an enhancement in the persistent, non-inactivating Na+ current (INa,P), a decisive factor in certain forms of epilepsy, has yet to be resolved. Persistent Na+ current, evoked by veratridine, induced bursts of action potentials and sustained membrane depolarization with monophasic intracellular Na+ concentration ([Na+]i) and biphasic [Ca2+]i increase in CA1 pyramidal cells in acute hippocampal slices. The Ca2+ response was tetrodotoxin- and extracellular Ca2+ -dependent and ionotropic glutamate receptor-independent. The first phase of [Ca2+]i rise was the net result of Ca2+ influx through voltage-gated Ca2+ channels and mitochondrial Ca2+ sequestration. The robust second phase in addition involved reverse operation of the Na+,Ca2+ exchanger and mitochondrial Ca2+ release. We excluded contribution of the endoplasmic reticulum. These results demonstrate a complex interaction between persistent, non-inactivating Na+ current and [Ca2+]i regulation in CA1 pyramidal cells. The described cellular mechanisms are most likely part of the pathomechanism of certain forms of epilepsy that are associated with INa,P. Describing the magnitude, temporal pattern and sources of Ca2+ increase induced by INa,P may provide novel targets for antiepileptic drug therapy. [source]