| |||
Ca2+ Oscillations (ca2+ + oscillation)
Selected AbstractsNeurone-to-astrocyte communication by endogenous ATP in mixed culture of rat hippocampal neurones and astrocytesDRUG DEVELOPMENT RESEARCH, Issue 1 2003Schuichi Koizumi ATP is recognized as an important intercellular signaling molecule in the peripheral and CNS. Glutamate is reported to be an important neurone-to-glia mediator being released from neurones and astrocytes that activates astrocytic and neuronal Ca2+ responses, respectively. We demonstrate here that endogenous ATP could be an extracellular molecule for neurone-to-astrocyte communication in cocultured rat hippocampal neurones and astrocytes. Hippocampal neurones reveal synchronized Ca2+ oscillation, which was due to glutamatergic synaptic transmission. When analyzed in a fura-2 method, a slight and very slow increase in intracellular Ca2+ concentration ([Ca2+]i) elevation was observed in some population of astrocytes. Such astrocytic [Ca2+]i elevation was dramatically inhibited by apyrase, though apyrase itself had no effect on neuronal Ca2+ oscillation. For a detail analysis, we investigated changes in [Ca2+]i in cells using a confocal microscopy. When cocultured hippocampal neurones and astrocytes were depolarized electronically in the presence of glutamate-receptor antagonists, a transient elevation in [Ca2+]i was observed in neurones, which was followed by a slowly initiated and small rise in [Ca2+]i in astrocytes. Apyrase or P2 receptor antagonists almost abolished the [Ca2+]i rises in astrocytes, suggesting that depolarization-evoked ATP release from neurones should produce astrocytic [Ca2+]i elevation via P2 receptors. Using a luciferin,luciferase bioluminescence assay, we found that neurones could release ATP in an activity-dependent manner. These findings suggest that endogenous ATP should be an important intercellular mediator between neurones and astrocytes and that functions of these cells should be fine-tuned by endogenously released ATP in situ. Drug Dev. Res. 59:88,94, 2003. © 2003 Wiley-Liss, Inc. [source] The role of free fatty acids, pancreatic lipase and Ca2+ signalling in injury of isolated acinar cells and pancreatitis model in lipoprotein lipase-deficient miceACTA PHYSIOLOGICA, Issue 1 2009F. Yang Abstract Aim and methods:, Recurrent pancreatitis is a common complication of severe hypertriglyceridaemia (HTG) often seen in patients carrying various gene mutations in lipoprotein lipase (LPL). This study investigates a possible pathogenic mechanism of cell damage in isolated mouse pancreatic acinar cells and of pancreatitis in LPL-deficient and in wild type mice. Results:, Addition of free fatty acids (FFA) or of chylomicrons to isolated pancreatic acinar cells caused stimulation of amylase release, and at higher concentrations it also caused cell damage. This effect was decreased in the presence of the lipase inhibitor orlistat. Surprisingly, pancreatic lipase whether in its active or inactive state could act like an agonist by inducing amylase secretion, increasing cellular cGMP levels and converting cell damaging sustained elevations of [Ca2+]cyt to normal Ca2+ oscillations. Caerulein increases the levels of serum amylase and caused more severe inflammation in the pancreas of LPL-deficient mice than in wild type mice. Conclusion:, We conclude that high concentrations of FFA as present in the plasma of LPL-deficient mice and in patients with HTG lead to pancreatic cell damage and are high risk factors for the development of acute pancreatitis. In addition to its enzymatic effect which leads to the generation of cell-damaging FFA from triglycerides, pancreatic lipase also prevents Ca2+ overload in pancreatic acinar cells and, therefore, counteracts cell injury. [source] Protein tyrosine phosphatases in Chaetopterus egg activationDEVELOPMENT GROWTH & DIFFERENTIATION, Issue 5-6 2003Shantá D. Hinton Changes in protein tyrosine phosphorylation are an essential aspect of egg activation after fertilization. Such changes result from the net contributions of both tyrosine kinases and phosphatases (PTP). This study was conducted to determine what role(s) PTP may have in egg activation. We identified four novel PTP in Chaetopterus pergamentaceus oocytes, cpPTPNT6, cpPTPNT7, cpPTPR2B, and cpPTPR2A, that have significant homology to, respectively, human PTP,, -,, -D2 and -BAS. The first two are cytosolic and the latter two are transmembrane. Several PTP inhibitors were tested to see if they would affect Chaetopterus pergamentaceus fertilization. Eggs treated with ,-bromo-4-hydroxyacetophenone (PTP inhibitor 1) exhibited microvillar elongation, which is a sign of cortical changes resulting from activation. Those treated with Na3VO4 underwent full parthenogenetic activation, including polar body formation and pseudocleavage and did so independently of extracellular Ca2+, which is required for the Ca2+ oscillations that initiate development after fertilization. Fluorescence microscopy identified phosphotyrosine-containing proteins in the cortex and around the nucleus of vanadate-activated eggs, whereas in fertilized eggs they were concentrated only in the cortex. Immunoblots of vanadate-activated and fertilized eggs showed tyrosine hyperphosphorylation of approximately140 kDa protein. These results suggest that PTP most likely maintain the egg in an inactive state by dephosphorylation of proteins independent of the Ca2+ oscillations in the activation process. [source] The patterns of spontaneous Ca2+ signals generated by ventral spinal neurons in vitro show time-dependent refinementEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 8 2009Sara Sibilla Abstract Embryonic spinal neurons maintained in organotypic slice culture are known to mimic certain maturation-dependent signalling changes. With such a model we investigated, in embryonic mouse spinal segments, the age-dependent spatio-temporal control of intracellular Ca2+ signalling generated by neuronal populations in ventral circuits and its relation with electrical activity. We used Ca2+ imaging to monitor areas located within the ventral spinal horn at 1 and 2 weeks of in vitro growth. Primitive patterns of spontaneous neuronal Ca2+ transients (detected at 1 week) were typically synchronous. Remarkably, such transients originated from widespread propagating waves that became organized into large-scale rhythmic bursts. These activities were associated with the generation of synaptically mediated inward currents under whole-cell patch-clamp. Such patterns disappeared during longer culture of spinal segments: at 2 weeks in culture, only a subset of ventral neurons displayed spontaneous, asynchronous and repetitive Ca2+ oscillations dissociated from background synaptic activity. We observed that the emergence of oscillations was a restricted phenomenon arising together with the transformation of ventral network electrophysiological bursting into asynchronous synaptic discharges. This change was accompanied by the appearance of discrete calbindin immunoreactivity against an unchanged background of calretinin-positive cells. It is attractive to assume that periodic oscillations of Ca2+ confer a summative ability to these cells to shape the plasticity of local circuits through different changes (phasic or tonic) in intracellular Ca2+. [source] Calcium dynamics are altered in cortical neurons lacking the calmodulin-binding protein RC3EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2003Jacqueline J. W. Van Dalen Abstract RC3 is a neuronal calmodulin-binding protein and protein kinase C substrate that is thought to play an important regulatory role in synaptic transmission and neuronal plasticity. Two molecules known to regulate synaptic transmission and neuronal plasticity are Ca2+ and calmodulin, and proposed mechanisms of RC3 action involve both molecules. However, physiological evidence for a role of RC3 in neuronal Ca2+ dynamics is limited. In the current study we utilized cultured cortical neurons obtained from RC3 knockout (RC3,/,) and wildtype mice (RC3+/+) and fura-2-based microscopic Ca2+ imaging to investigate a role for RC3 in neuronal Ca2+ dynamics. Immunocytochemical characterization showed that the RC3,/, cultures lack RC3 immunoreactivity, whereas cultures prepared from wildtype mice showed RC3 immunoreactivity at all ages studied. RC3+/+ and RC3,/, cultures were indistinguishable with respect to neuron density, neuronal morphology, the formation of extensive neuritic networks and the presence of glial fibrillary acidic protein (GFAP)-positive astrocytes and ,-aminobutyric acid (GABA)ergic neurons. However, the absence of RC3 in the RC3,/, neurons was found to alter neuronal Ca2+ dynamics including baseline Ca2+ levels measured under normal physiological conditions or after blockade of synaptic transmission, spontaneous intracellular Ca2+ oscillations generated by network synaptic activity, and Ca2+ responses elicited by exogenous application of N-methyl- d -aspartate (NMDA) or class I metabotropic glutamate receptor agonists. Thus, significant changes in Ca2+ dynamics occur in cortical neurons when RC3 is absent and these changes do not involve changes in gross neuronal morphology or neuronal maturation. These data provide direct physiological evidence for a regulatory role of RC3 in neuronal Ca2+ dynamics. [source] Ouabain stimulates endothelin release and expression in human endothelial cells without inhibiting the sodium pumpFEBS JOURNAL, Issue 5 2004Robert Saunders Ouabain, a sodium pump (Na+/,K+ -ATPase) inhibitor, has been shown to act as a hormone and is possibly involved in the pathogenesis of hypertension. The mechanism by which ouabain may act was investigated using primary cultures of human umbilical artery endothelial cells (HUAECs), which are known to express and release the vasoconstrictive hormone endothelin (ET-1). Five minutes after application, low concentrations of ouabain induced Ca2+ oscillations and stimulated ET-1 release from endothelial cells into the medium. To investigate whether the observed effects were due to inhibition of the sodium pump, the effects of ouabain on the uptake of 86Rb+ by HUAECs were examined. Unexpectedly, ouabain concentrations below 10 nm stimulated 86Rb+ uptake by 15,20%, and in some experiments by 50%, results that are consistent with a stimulation of the pump. Within the concentration range 1,10 nm, ouabain induced a 2.5-fold stimulation (phosphorylation) of mitogen-activated protein kinase (MAP kinase). After incubation of HUAECs with ouabain for 12 h, the glycoside stimulated cell growth by 49 ± 4%, as measured by cell number, with a maximum response at 5 nm. At similar concentrations, ouabain also increased ET-1 mRNA abundance by 19.5 ± 3.1%. The results indicate that, by influencing ET-1 expression and release, ouabain may contribute to the regulation of vascular tone. The data also confirm that it is not a global inhibition of the sodium pump that is involved in the mechanism of action of this cardiac glycoside. [source] Calcium influx mechanisms underlying calcium oscillations in rat hepatocytes,HEPATOLOGY, Issue 4 2008Bertina F. Jones The process of capacitative or store-operated Ca2+ entry has been extensively investigated, and recently two major molecular players in this process have been described. Stromal interacting molecule (STIM) 1 acts as a sensor for the level of Ca2+ stored in the endoplasmic reticulum, and Orai proteins constitute pore-forming subunits of the store-operated channels. Store-operated Ca2+ entry is readily demonstrated with protocols that provide extensive Ca2+ store depletion; however, the role of store-operated entry with modest and more physiological cell stimuli is less certain. Recent studies have addressed this question in cell lines; however, the role of store-operated entry during physiological activation of primary cells has not been extensively investigated, and there is little or no information on the roles of STIM and Orai proteins in primary cells. Also, the nature of the Ca2+ influx mechanism with hormone activation of hepatocytes is controversial. Hepatocytes respond to physiological levels of glycogenolytic hormones with well-characterized intracellular Ca2+ oscillations. In the current study, we have used both pharmacological tools and RNA interference (RNAi)-based techniques to investigate the role of store-operated channels in the maintenance of hormone-induced Ca2+ oscillations in rat hepatocytes. Pharmacological inhibitors of store-operated channels blocked thapsigargin-induced Ca2+ entry but only partially reduced the frequency of Ca2+ oscillations. Similarly, RNAi knockdown of STIM1 or Orai1 substantially reduced thapsigargin-induced calcium entry, and more modestly diminished the frequency of vasopressin-induced oscillations. Conclusion: Our findings establish that store-operated Ca2+ entry plays a role in the maintenance of agonist-induced oscillations in primary rat hepatocytes but indicate that other agonist-induced entry mechanisms must be involved to a significant extent. (HEPATOLOGY 2008.) [source] Alteration of RANKL-Induced Osteoclastogenesis in Primary Cultured Osteoclasts From SERCA2+/, Mice,,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 10 2009Yu-Mi Yang Abstract RANKL is essential for the terminal differentiation of monocytes/marcrophages into osteoclasts. RANKL induces long-lasting oscillations in the intracellular concentration of Ca2+ ([Ca2+]i) only after 24 h of stimulation. These Ca2+ oscillations play a switch-on role in NFATc1 expression and osteoclast differentiation. Which Ca2+ transporting pathway is induced by RANKL to evoke the Ca2+ oscillations and its specific role in RANKL-mediated osteoclast differentiation is not known. This study examined the effect of a partial loss of sarco/endoplasmic reticulum Ca2+ ATPase type2 (SERCA2) on osteoclast differentiation in SERCA2 heterozygote mice (SERCA2+/,). The BMD in the tibias of SERCA2+/, mice increased >1.5-fold compared with wildtype mice (WT). RANKL-induced [Ca2+]i oscillations were generated 48 h after RANKL treatment in the WT mice but not in the SERCA2+/, bone marrow,derived macrophages (BMMs). Forty-eight hours after RANKL treatment, there was a lower level of NFATc1 protein expression and markedly reduced translocation of NFATc1 into the nucleus during osteoclastogenesis of the SERCA2+/, BMMs. In addition, RANKL treatment of SERCA2+/, BMMs incompletely induced formation of multinucleated cells, leading to reduced bone resorption activity. These results suggest that RANKL-mediated induction of SERCA2 plays a critical role in the RANKL-induced [Ca2+]i oscillations that are essential for osteoclastogenesis. [source] Platelet lysate promotes in vitro wound scratch closure of human dermal fibroblasts: different roles of cell calcium, P38, ERK and PI3K/AKTJOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 8b 2009Elia Ranzato Abstract There is a growing interest for the clinical use of platelet derivates in wound dressing. Platelet beneficial effect is attributed to the release of growth factors and other bioactive substances, though mechanisms are mostly unknown. We studied wound-healing processes of human primary fibroblasts, by exposing cells to a platelet lysate (PL) obtained from blood samples. Crystal violet and tetrazolium salt (MTS) assays showed dose,response increase of cell proliferation and metabolism. In scratch wound and transwell assays, a dose of 20% PL induced a significant increase of wound closure rate at 6 and 24 hrs, and had a strong chemotactic effect. BAPTA-AM, SB203580 and PD98059 caused 100% inhibition of PL effects, whereas wortmannin reduced to about one third the effect of PL on wound healing and abolished the chemotactic response. Confocal imaging showed the induction by PL of serial Ca2+ oscillations in fibroblasts. Data indicate that cell Ca2+ plays a fundamental role in wound healing even without PL, p38 and ERK1/2 are essential for PL effects but are also activated by wounding per se, PI3K is essential for PL effects and its downstream effector Akt is activated only in the presence of PL. In conclusion, PL stimulates fibroblast wound healing through the activation of cell proliferation and motility with different patterns of involvement of different signalling pathways. [source] Interstitial cells in the vasculatureJOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 2 2005M. I. Harhun Abstract Interstitial cells of Cajal are believed to play an important role in gastrointestinal tissues by generating and propagating electrical slow waves to gastrointestinal muscles and/or mediating signals from the enteric nervous system. Recently cells with similar morphological characteristics have been found in the wall of blood vessels such as rabbit portal vein and guinea pig mesenteric artery. These non-contractile cells are characterised by the presence of numerous processes and were easily detected in the wall of the rabbit portal vein by staining with methylene blue or by antibodies to the marker of Interstitial Cells of Cajal c-kit. These vascular cells have been termed "interstitial cells" by analogy with interstitial cells found in the gastrointestinal tract. Freshly dispersed interstitial cells from rabbit portal vein and guinea pig mesenteric artery displayed various Ca2+ -release events from endo/sarcoplasmic reticulum including fast localised Ca2+ transients (Ca2+ sparks) and longer and slower Ca2+ events. Single interstitial cells from the rabbit portal vein, which is a spontaneously active vessel, also demonstrated rhythmical Ca2+ oscillations associated with membrane depolarisations, which suggests that in this vessel interstitial cells may act as pacemakers for smooth muscle cells. The function of interstitial cells from the mesenteric arteries is yet unknown. This article reviews some of the recent findings regarding interstitial cells from blood vessels obtained by our laboratory using electron microscopy, immunohistochemistry, tight-seal patch-clamp recording, and fluorescence confocal imaging techniques. [source] Isoflurane enhances spontaneous Ca2+ oscillations in developing rat hippocampal neurons in vitroACTA ANAESTHESIOLOGICA SCANDINAVICA, Issue 6 2009Q. XIANG Background: During the nervous system development, spontaneous synchronized Ca2+ oscillations are thought to possess integrative properties because their amplitude and frequency can influence the patterning of neuronal connection, neuronal differentiation, axon outgrowth, and long-distance wiring. Accumulating studies have confirmed that some drugs such as volatile anesthetic isoflurane produced histopathologic changes in the central nervous system in juvenile animal models. Because the hippocampus plays an important role in learning and memory, the present work was designed to characterize the Ca2+ oscillations regulated by volatile anesthetic isoflurane in primary cultures of developing hippocampal neurons (5-day-cultured). Methods: Primary cultures of rat hippocampal neurons (5-day-cultured) were loaded with the Ca2+ indicator Fluo-4AM (4 ,M) and were studied with a confocal laser microscope. Results: Approximately 22% of 5-day-cultured hippocampal neurons exhibited typical Ca2+ oscillations. These oscillations were dose-dependently enhanced by isoflurane (EC50 0.5 MAC, minimum alveolar concentration) and this effect could be reverted by bicuculline (50 ,M), a specific ,-aminobutyric acid (GABAA) receptor antagonist. Conclusion: Unlike its depressant effect on the Ca2+ oscillations in adult neurons in previous researches, isoflurane dose-dependently enhanced calcium oscillations in developing hippocampal neurons by activating GABAA receptors, a major excitatory receptor in synergy with N -methyl- d -aspartate receptors at the early stages of development. It may be involved in the mechanism of an isoflurane-induced neurotoxic effect in the developing rodent brain. [source] Evidence of calcium- and SNARE-dependent release of CuZn superoxide dismutase from rat pituitary GH3 cells and synaptosomes in response to depolarizationJOURNAL OF NEUROCHEMISTRY, Issue 3 2007Mariarosaria Santillo Abstract The antioxidant enzyme CuZn superoxide dismutase (SOD1) is secreted by many cell lines. However, it is not clear whether SOD1 secretion is only constitutive or can be regulated in an activity-dependent fashion. Using rat pituitary GH3 cells that express voltage-dependent calcium channels and are subjected to Ca2+ oscillations, we found that treatment with high K+ -induced SOD1 release that was significantly higher than the constitutive secretion. Evoked SOD1 release was correlated with depolarization-dependent calcium influx and was virtually abolished by removal of extracellular calcium with EGTA or by pre-incubation of GH3 cells with Botulinum toxin A that cleaves the SNARE protein SNAP-25. Immunofluorescence experiments performed in GH3 cells and rat brain synaptosomes showed that K+ -depolarization induced a marked depletion of intracellular SOD1 immunoreactivity, an effect that was again abolished in the absence of extracellular calcium or after treatment with Botulinum toxin A. Subcellular fractionation analysis showed that SOD1 was present in large dense core vesicles. These data clearly show that, in addition to the constitutive SOD1 secretion, depolarization induces an additional rapid calcium-dependent SOD1 release in GH3 cells and in rat brain synaptosomes. This likely occurs through exocytosis from SOD1-containing vesicles operated by the SNARE complex. [source] The Effects of Disruption of A Kinase Anchoring Protein,Protein Kinase A Association on Protein Kinase A Signalling in Neuroendocrine Melanotroph Cells of Xenopus laevisJOURNAL OF NEUROENDOCRINOLOGY, Issue 7 2006G. J. H. Corstens Abstract The secretory activity of melanotroph cells from Xenopus laevis is regulated by multiple neurotransmitters that act through adenylyl cyclase. Cyclic adenosine monophosphate (cAMP), acting on protein kinase A (PKA), stimulates the frequency of intracellular Ca2+ oscillations and the secretory activity of the melanotroph cell. Anchoring of PKA near target proteins is essential for many PKA-regulated processes, and the family of A kinase anchoring proteins (AKAPs) is involved in the compartmentalisation of PKA type II (PKA II) regulatory subunits. In the present study, we determined to what degree cAMP signalling in Xenopus melanotrophs depends on compartmentalised PKA II. For this purpose, a membrane-permeable stearated form of Ht31 (St-Ht31), which dislodges PKA II from AKAP (thus disrupting PKA II signalling), was used. The effect of St-Ht31 on both secretion of radiolabelled peptides and intracellular Ca2+ signalling by superfused Xenopus melanotrophs was assessed. St-Ht31 stimulated secretion but had no effect on Ca2+ signalling. We conclude Xenopus melanotrophs possess a St-Ht31-sensitive PKA II that is associated with the exocytosis machinery and, furthermore, that Ca2+ signalling is regulated by an AKAP-independent signalling system. Moreover, our results support a recent proposal that AKAP participates in regulating PKA activity independently from cAMP. [source] Melanotrope Cells of Xenopus laevis Express Multiple Types of High-Voltage-Activated Ca2+ ChannelsJOURNAL OF NEUROENDOCRINOLOGY, Issue 1 2005H.-Y. Zhang Abstract Pituitary melanotrope cells are neuroendocrine signal transducing cells that translate physiological stimuli into adaptive hormonal responses. In this translation process, Ca2+ channels play essential roles. We have characterised which types of Ca2+ current are present in melanotropes of the amphibian Xenopus laevis, using whole-cell, voltage-clamp, patch-clamp experiments and specific blockers of the various current types. Running an activation current,voltage relationship protocol from a holding potential (HP) of ,80 mV/or ,110 mV, shows that Xenopus melanotropes possess only high-voltage activated (HVA) Ca2+ currents. Steady-state inactivation protocols reveal that no inactivation occurs at ,80 mV, whereas 30% of the current is inactivated at ,30 mV. We determined the contribution of individual channel types to the total HVA Ca2+ current, examining the effect of each channel blocker at an HP of ,80 mV and ,30 mV. At ,80 mV, ,-conotoxin GVIA, ,-agatoxin IVA, nifedipine and SNX-482 inhibit Ca2+ currents by 21.8 ± 4.1%, 26.1 ± 3.1%, 24.2 ± 2.4% and 17.9 ± 4.7%, respectively. At ,30 mV, ,-conotoxin GVIA, nifedipine and ,-agatoxin IVA inhibit Ca2+ currents by 33.8 ± 3.0, 24.2 ± 2.6 and 16.0 ± 2.8%, respectively, demonstrating that these blockers substantially inhibit part of the Ca2+ current, independently from the HP. We have previously demonstrated that ,-conotoxin GVIA can block Ca2+ oscillations and steps. We now show that nifedipine and ,-agatoxin IVA do not affect the intracellular Ca2+ dynamics, whereas SNX-482 reduces the Ca2+ step amplitude. We conclude that Xenopus melanotrope cells express all four major types of HVA Ca2+ channel, as well as the resulting currents, but no low-voltage activated channels. The results provide the basis for future studies on the complex regulation of channel-mediated Ca2+ influxes into this neuroendocrine cell type as a function of its role in the animal's adaptation to external challenges. [source] Cytoplasmic calcium oscillations and store-operated calcium influxTHE JOURNAL OF PHYSIOLOGY, Issue 13 2008James W. Putney Intracellular calcium oscillations have fascinated scientists for decades. They provide an important cellular signal which, unlike most signalling mechanisms, is digitally encoded. While it is generally agreed that oscillations most frequently arise from cyclical release and re-uptake of intracellularly stored calcium, it is becoming increasingly clear that influx of calcium across the plasma membrane also plays a critical role in their maintenance and even in delivering their signal to the correct cellular locus. In this review we will discuss the role played by Ca2+ entry mechanisms in Ca2+ oscillations, and approaches to understanding the molecular nature of this Ca2+ entry pathway. [source] What's in store for Ca2+ oscillations?THE JOURNAL OF PHYSIOLOGY, Issue 3 2005Colin W. Taylor No abstract is available for this article. [source] Functional expression of the hyperpolarization-activated, non-selective cation current If in immortalized HL-1 cardiomyocytesTHE JOURNAL OF PHYSIOLOGY, Issue 1 2002Laura Sartiani HL-1 cells are adult mouse atrial myocytes induced to proliferate indefinitely by SV40 large T antigen. These cells beat spontaneously when confluent and express several adult cardiac cell markers including the outward delayed rectifier K+ channel. Here, we examined the presence of a hyperpolarization-activated If current in HL-1 cells using the whole-cell patch-clamp technique on isolated cells enzymatically dissociated from the culture at confluence. Cell membrane capacitance (Cm) ranged from 5 to 53 pF. If was detected in about 30 % of the cells and its occurrence was independent of the stage of the culture. If maximal slope conductance was 89.7 ± 0.4 pS pF,1 (n= 10). If current in HL-1 cells showed typical characteristics of native cardiac If current: activation threshold between ,50 and ,60 mV, half-maximal activation potential of ,83.1 ± 0.7 mV (n= 50), reversal potential at ,20.8 ± 1.5 mV (n= 10), time-dependent activation by hyperpolarization and blockade by 4 mm Cs+. In half of the cells tested, activation of adenylyl cyclase by the forskolin analogue L858051 (20 ,m) induced both a ,6 mV positive shift of the half-activation potential and a ,37 % increase in the fully activated If current. RT-PCR analysis of the hyperpolarization-activated, cyclic nucleotide-gated channels (HCN) expressed in HL-1 cells demonstrated major contributions of HCN1 and HCN2 channel isoforms to If current. Cytosolic Ca2+ oscillations in spontaneously beating HL-1 cells were measured in Fluo-3 AM-loaded cells using a fast-scanning confocal microscope. The oscillation frequency ranged from 1.3 to 5 Hz and the spontaneous activity was stopped in the presence of 4 mm Cs+. Action potentials from HL-1 cells had a triangular shape, with an overshoot at +15 mV and a maximal diastolic potential of ,69 mV, i.e. more negative than the threshold potential for If activation. In conclusion, HL-1 cells display a hyperpolarization-activated If current which might contribute to the spontaneous contractile activity of these cells. [source] Spontaneous Ca2+ Waves in Rabbit Corpus Cavernosum: Modulation by Nitric Oxide and cGMPTHE JOURNAL OF SEXUAL MEDICINE, Issue 4 2009Gerard P. Sergeant PhD ABSTRACT Introduction., Detumescent tone and subsequent relaxation by nitric oxide (NO) are essential processes that determine the erectile state of the penis. Despite this, the mechanisms involved are incompletely understood. It is often assumed that the tone is associated with a sustained high cytosolic Ca2+ level in the corpus cavernosum smooth muscle cells, however, an alternative possibility is that oscillatory Ca2+ signals regulate tone, and erection occurs as a result of inhibition of Ca2+ oscillations by NO. Aims., The aim of this study is to determine if smooth muscle cells displayed spontaneous Ca2+ oscillations and, if so, whether these were regulated by NO. Methods., Male New Zealand white rabbits were euthanized and smooth muscle cells were isolated by enzymatic dispersal for confocal imaging of intracellular Ca2+ (using fluo-4AM) and patch clamp recording of spontaneous membrane currents. Thin tissue slices were also loaded with fluo-4AM for live imaging of Ca2+. Main Outcome Measure., Cytosolic Ca2+ was measured in isolated smooth muscle cells and tissue slices. Results., Isolated rabbit corpus cavernosum smooth muscle cells developed spontaneous Ca2+ waves that spread at a mean velocity of 65 µm/s. Dual voltage clamp/confocal recordings revealed that each of the Ca2+ waves was associated with an inward current typical of the Ca2+ -activated Cl - currents developed by these cells. The waves depended on an intact sarcoplasmic reticulum Ca2+ store, as they were blocked by cyclopiazonic acid (Calbiochem, San Diego, CA, USA) and agents that interfere with ryanodine receptors and IP3 -mediated Ca2+ release. The waves were also inhibited by an NO donor (diethylamine NO; Tocris Bioscience, Bristol, Avon, UK), 3-(5-hydroxymethyl-2-furyl)-1-benzyl indazole (YC-1) (Alexis Biochemicals, Bingham, Notts, UK), 8-bromo-cyclic guanosine mono-phosphate (Tocris), and sildenafil (Viagra, Pfizer, Sandwich, Kent, UK). Regular Ca2+ oscillations were also observed in whole tissue slices where they were clearly seen to precede contraction. This activity was also markedly inhibited by sildenafil, suggesting that it was under NO regulation. Conclusions., These results provide a new basis for understanding detumescent tone in the corpus cavernosum and its inhibition by NO. Sergeant GP, Craven M, Hollywood MA, McHale NG, and Thornbury KD. Spontaneous Ca2+ waves in rabbit corpus cavernosum: Modulation by nitric oxide and cGMP. J Sex Med **;**:**,**. [source] Novel role for polycystin-1 in modulating cell proliferation through calcium oscillations in kidney cellsCELL PROLIFERATION, Issue 3 2008G. Aguiari Objectives: Polycystin-1 (PC1), a signalling receptor regulating Ca2+ -permeable cation channels, is mutated in autosomal dominant polycystic kidney disease, which is typically characterized by increased cell proliferation. However, the precise mechanisms by which PC1 functions on Ca2+ homeostasis, signalling and cell proliferation remain unclear. Here, we investigated the possible role of PC1 as a modulator of non-capacitative Ca2+ entry (NCCE) and Ca2+ oscillations, with downstream effects on cell proliferation. Results and discussion: By employing RNA interference, we show that depletion of endogenous PC1 in HEK293 cells leads to an increase in serum-induced Ca2+ oscillations, triggering nuclear factor of activated T cell activation and leading to cell cycle progression. Consistently, Ca2+ oscillations and cell proliferation are increased in PC1-mutated kidney cystic cell lines, but both abnormal features are reduced in cells that exogenously express PC1. Notably, blockers of the NCCE pathway, but not of the CCE, blunt abnormal oscillation and cell proliferation. Our study therefore provides the first demonstration that PC1 modulates Ca2+ oscillations and a molecular mechanism to explain the association between abnormal Ca2+ homeostasis and cell proliferation in autosomal dominant polycystic kidney disease. [source] |