| |||
Ca2+ Homeostasis (ca2+ + homeostasi)
Selected AbstractsWalker tumor cells express larger amounts of the antiapoptotic protein Bcl-2 and presents higher resistance to toxic concentrations of Ca2+ than the tumor cells K 562DRUG DEVELOPMENT RESEARCH, Issue 4 2001Graziela Milani Abstract Ca2+ homeostasis was studied in two tumor cell lines (Walker 256 and K 562) previously shown to exhibit different mitochondrial Ca2+ accumulation capacity. When intact, both cells present cytosolic Ca2+ concentrations within the range expected for mammalian cells, as determined through fura-2 fluorescence ratios. In order to study intracellular Ca2+ distribution, digitonin was used to permeabilize the plasma membrane without affecting intracellular organelle structure, as assessed using electron microscopy. Digitonin-permeabilized Walker 256 cells incubated with Ca2+ presented uptake of the cation exclusively through mitochondrial activity. In addition, very large Ca2+ loads were necessary to promote a disruption of Walker 256 mitochondrial membrane potential. K 562 cells presented active Ca2+ uptake through both nonmitochondrial and mitochondrial compartments and suffered disruption of mitochondrial membrane potential at lower Ca2+ loads than Walker 256 mitochondria. The higher Ca2+ resistance in Walker 256 cells could be attributed to Bcl-2 overexpression, as evidenced by immunocytochemical staining. Thus, we correlate natural Bcl-2 overexpression, observed in Walker 256 cells, with higher resistance to mitochondrial Ca2+ overload, as was shown previously in mitochondria from cells transfected with the bcl-2 gene. Drug Dev. Res. 52:508,514, 2001. © 2001 Wiley-Liss, Inc. [source] Acute action of rotenone on nigral dopaminergic neurons , involvement of reactive oxygen species and disruption of Ca2+ homeostasisEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 10 2009Peter S. Freestone Abstract Rotenone is a toxin used to generate animal models of Parkinson's disease; however, the mechanisms of toxicity in substantia nigra pars compacta (SNc) neurons have not been well characterized. We have investigated rotenone (0.05,1 ,m) effects on SNc neurons in acute rat midbrain slices, using whole-cell patch-clamp recording combined with microfluorometry. Rotenone evoked a tolbutamide-sensitive outward current (94 ± 15 pA) associated with increases in intracellular [Ca2+] ([Ca2+]i) (73.8 ± 7.7 nm) and intracellular [Na+] (3.1 ± 0.6 mm) (all with 1 ,m). The outward current was not affected by a high ATP level (10 mm) in the patch pipette but was decreased by Trolox. The [Ca2+]i rise was abolished by removing extracellular Ca2+, and attenuated by Trolox and a transient receptor potential M2 (TRPM2) channel blocker, N -(p -amylcinnamoyl) anthranilic acid. Other effects included mitochondrial depolarization (rhodamine-123) and increased mitochondrial reactive oxygen species (ROS) production (MitoSox), which was also abolished by Trolox. A low concentration of rotenone (5 nm) that, by itself, did not evoke a [Ca2+]i rise resulted in a large (46.6 ± 25.3 nm) Ca2+ response when baseline [Ca2+]i was increased by a ,priming' protocol that activated voltage-gated Ca2+ channels. There was also a positive correlation between ,naturally' occurring variations in baseline [Ca2+]i and the rotenone-induced [Ca2+]i rise. This correlation was not seen in non-dopaminergic neurons of the substantia nigra pars reticulata (SNr). Our results show that mitochondrial ROS production is a key element in the effect of rotenone on ATP-gated K+ channels and TRPM2-like channels in SNc neurons, and demonstrate, in these neurons (but not in the SNr), a large potentiation of rotenone-induced [Ca2+]i rise by a small increase in baseline [Ca2+]i. [source] Interaction between catalytically inactive calpain and calpastatinFEBS JOURNAL, Issue 8 2006Evidence for its occurrence in stimulated cells Conformational changes in the calpain molecule following interaction with natural ligands can be monitored by the binding of a specific monoclonal antibody directed against the catalytic domain of the protease. None of these conformational states showed catalytic activity and probably represent intermediate forms preceding the active enzyme state. In its native inactive conformation, calpain shows very low affinity for this monoclonal antibody, whereas, on binding to the ligands Ca2+, substrate or calpastatin, the affinity increases up to 10-fold, with calpastatin being the most effective. This methodology was also used to show that calpain undergoes similar conformational changes in intact cells exposed to stimuli that induce either a rise in intracellular [Ca2+] or extensive diffusion of calpastatin into the cytosol without affecting Ca2+ homeostasis. The fact that the changes in the calpain state are also observed under the latter conditions indicates that calpastatin availability in the cytosol is the triggering event for calpain,calpastatin interaction, which is presumably involved in the control of the extent of calpain activation through translocation to specific sites of action. [source] Calcium and magnesium competitively influence the growth of a PMR1 deficient Saccharomyces cerevisiae strainFEMS MICROBIOLOGY LETTERS, Issue 2 2005Réka Szigeti Abstract PMR1, the Ca2+/Mn2+ ATPase of the secretory pathway in Saccharomyces cerevisiae was the first member of the secretory pathway Ca2+ ATPases (SPCA) to be characterized. In the past few years, pmr1, yeast have received more attention due to the recognition that the human homologue of this protein, hSPCA1 is defective in chronic benign pemphigus or Hailey,Hailey disease (HHD). Recent publications have described pmr1, S. cerevisiae as a useful model organism for studying the molecular pathology of HHD. Some observations indicated that the high Ca2+ sensitive phenotype of PMR1 defective yeast strains may be the most relevant in this respect. Here we show that the total cellular calcium response of a pmr1, S. cerevisiae upon extracellular Ca2+ challenge is decreased compared to the wild type strain similarly as observed in keratinocytes. Additionally, the novel magnesium sensitivity of PMR1 defective yeast is revealed, which appears to be a result of competition for uptake between Ca2+ and Mg2+ at the plasma membrane level. Our findings indicate that extracellular Ca2+ and Mg2+ competitively influence the intracellular Ca2+ homeostasis of S. cerevisiae. These observations may further our understanding of HHD. [source] Regulation of L-type Ca++ currents and process morphology in white matter oligodendrocyte precursor cells by golli-myelin proteinsGLIA, Issue 11 2010Daniel Fulton Abstract The golli myelin basic proteins are expressed in oligodendroglial precursor cells (OPCs) where they play a role in regulating Ca2+ homeostasis. During depolarization, they influence process outgrowth and migration through their action on voltage-operated Ca2+ channels (VOCCs). To identify ion channels that are modulated by golli, we examined the electrophysiological properties of VOCCs in OPCs in the white matter of golli knock-out and control mice. OPCs exhibited two distinct Ca2+ channels, which were distinguished by their voltage dependence and pharmacological profiles and which exhibited many of the hallmarks of LVA/T-type and HVA/L-type Ca2+ channels. The density of high-voltage-activated (HVA) currents was reduced in OPCs recorded in golli-KO tissue, while low-voltage-activated (LVA) currents remained unaltered in these cells. These data indicate that golli exerts an exclusive influence on L-type Ca2+ channels in OPCs. Oligodendrocytes (OLs) also displayed LVA and HVA currents, although the density of these currents was much reduced at this developmental stage. These currents were not altered in golli-KO OLs showing the influence of golli on L-type Ca2+ channels is restricted to a specific time-window during the course of oligodendroglial development. The actions of golli on OPC L-type Ca2+ channels were accompanied by changes in process morphology, including a reduction in process complexity and the appearance of enlarged varicosities that decorated these cellular processes. These data on L-type Ca2+ channels and process development provide in situ evidence for the influence of golli on VOCCs, and offer an explanation for the hypomyelination observed in the brains of golli-KO mice. © 2010 Wiley-Liss, Inc. [source] Murine TNF,ARE Crohn's disease model displays diminished expression of intestinal Ca2+ transportersINFLAMMATORY BOWEL DISEASES, Issue 6 2008Sylvie Huybers MSc Abstract Background: Patients suffering from Crohn's disease (CD) show increased incidence of low bone mineral density. Investigating this complication is difficult because the exact etiology of CD remains elusive. Mice carrying a deletion in the tumor necrosis factor (TNF) AU-rich elements (ARE) are reported as a model for human CD and are characterized by elevated TNF-, levels and inflammations in the terminal ileum. To evaluate whether these mice have a Ca2+ handling problem, this study analyzed the Ca2+ homeostasis in heterozygous TNF,ARE mice (TNF,ARE/+) in comparison to wildtype littermates. Methods: Beside serum Ca2+ and vitamin D levels, the expression of Ca2+ transporters was analyzed in intestine, kidney and bone using quantitative real-time PCR, Western blot and immunohistochemistry. Bone scans were performed to measure bone parameters. Results: Ca2+ transporters in duodenum (TRPV6, calbindin-D9K, PMCA1b) and kidney (TRPV5, calbindin-D28K, NCX1) showed significantly reduced mRNA expression levels in TNP,ARE/+ mice, except for renal TRPV5. In bone, only calbindin-D9K mRNA displayed a significant down-regulation. These findings were supported by declined duodenal calbindin-D9K and renal calbindin-D28K protein values. Likely, this down-regulation of Ca2+ transporters in TNP,ARE/+ mice is mediated by the 58 ± 9% reduction in serum 1,25(OH)2D3 levels. Diminished expression of Ca2+ transporters combined with unchanged serum Ca2+ levels assumes Ca2+ loss from bone to compensate for the body's overall Ca2+ shortage. Indeed, microcomputed tomography scanning demonstrated reduced trabecular and corticol bone thickness and volume in TNF,ARE/+ mice. This finding is further supported by increased total deoxypyridinoline in serum. Conclusions: Our results imply that TNF,ARE/+ mice have a disturbed Ca2+ homeostasis characterized by reduced duodenal and renal Ca2+ transporters, diminished 1,25(OH)2D3 levels, and increased bone resorption associated with profound bone abnormalities. (Inflamm Bowel Dis 2008) [source] Calcium ions in neuronal degenerationIUBMB LIFE, Issue 9 2008Urszula Wojda Abstract Neuronal Ca2+ homeostasis and Ca2+ signaling regulate multiple neuronal functions, including synaptic transmission, plasticity, and cell survival. Therefore disturbances in Ca2+ homeostasis can affect the well-being of the neuron in different ways and to various degrees. Ca2+ homeostasis undergoes subtle dysregulation in the physiological ageing. Products of energy metabolism accumulating with age together with oxidative stress gradually impair Ca2+ homeostasis, making neurons more vulnerable to additional stress which, in turn, can lead to neuronal degeneration. Neurodegenerative diseases related to aging, such as Alzheimer's disease, Parkinson's disease, or Huntington's disease, develop slowly and are characterized by the positive feedback between Ca2+ dyshomeostasis and the aggregation of disease-related proteins such as amyloid beta, alfa-synuclein, or huntingtin. Ca2+ dyshomeostasis escalates with time eventually leading to neuronal loss. Ca2+ dyshomeostasis in these chronic pathologies comprises mitochondrial and endoplasmic reticulum dysfunction, Ca2+ buffering impairment, glutamate excitotoxicity and alterations in Ca2+ entry routes into neurons. Similar changes have been described in a group of multifactorial diseases not related to ageing, such as epilepsy, schizophrenia, amyotrophic lateral sclerosis, or glaucoma. Dysregulation of Ca2+ homeostasis caused by HIV infection or by sudden accidents, such as brain stroke or traumatic brain injury, leads to rapid neuronal death. The differences between the distinct types of Ca2+ dyshomeostasis underlying neuronal degeneration in various types of pathologies are not clear. Questions that should be addressed concern the sequence of pathogenic events in an affected neuron and the pattern of progressive degeneration in the brain itself. Moreover, elucidation of the selective vulnerability of various types of neurons affected in the diseases described here will require identification of differences in the types of Ca2+ homeostasis and signaling among these neurons. This information will be required for improved targeting of Ca2+ homeostasis and signaling components in future therapeutic strategies, since no effective treatment is currently available to prevent neuronal degeneration in any of the pathologies described here. © 2008 IUBMB IUBMB Life, 60(9): 575,590, 2008 [source] Voltage-dependent ebselen and diorganochalcogenides inhibition of 45Ca2+ influx into brain synaptosomesJOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, Issue 3 2003M. B. Moretto Abstract By mediating the Ca2+ influx, Ca2+ channels play a central role in neurotransmission. Chemical agents that potentially interfere with Ca2+ homeostasis are potential toxic agents. In the present investigation, changes in Ca2+ influx into synaptosomes by organic forms of selenium and tellurium were examined under nondepolarizing and depolarizing conditions induced by high KCl concentration (135 mM) or by 4-aminopyridine (4-AP). Under nondepolarizing conditions, ebselen (400 ,M) increased Ca2+ influx; diphenyl ditelluride (40,400 ,M) decreased Ca2+ in all concentrations tested; and diphenyl diselenide decreased Ca2+ influx at 40 and 100 ,M, but had no effect at 400 ,M. In the presence of KCl as depolarizing agent, ebselen and diphenyl ditelluride decreased Ca2+ influx in a linear fashion. In contrast, diphenyl diselenide did not modify Ca2+ influx into isolated nerve terminals. In the presence of 4-AP (3 mM) as depolarizing agent, ebselen (400 ,M) caused a significant increase, whereas diphenyl diselenide and diphenyl ditelluride inhibited Ca2+ influx into synaptosomes. The results can be explained by the fact that the mechanism through which 4-AP and high K+ induced elevation of intracellular Ca2+ is not exactly coincident. The mechanism by which diphenyl ditelluride and ebselen interact with Ca2+ channel is unknown, but may be related to reactivity with critical sulfhydryl groups in the protein complex. The results of the present study indicate that the effects of organochalcogenides were rather complex depending on the condition and the depolarizing agent used. © 2003 Wiley Periodicals, Inc. J Biochem Mol Toxicol 17:154,160, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/jbt.10073 [source] Calcium Channel TRPV6 Is Involved in Murine Maternal,Fetal Calcium Transport,,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 8 2008Yoshiro Suzuki Abstract Maternal,fetal calcium (Ca2+) transport is crucial for fetal Ca2+ homeostasis and bone mineralization. In this study, the physiological significance of the transient receptor potential, vanilloid 6 (TRPV6) Ca2+ channel in maternal,fetal Ca2+ transport was investigated using Trpv6 knockout mice. The Ca2+ concentration in fetal blood and amniotic fluid was significantly lower in Trpv6 knockout fetuses than in wildtypes. The transport activity of radioactive Ca2+ (45Ca) from mother to fetuses was 40% lower in Trpv6 knockout fetuses than in wildtypes. The ash weight was also lower in Trpv6 knockout fetuses compared with wildtype fetuses. TRPV6 mRNA and protein were mainly localized in intraplacental yolk sac and the visceral layer of extraplacental yolk sac, which are thought to be the places for maternal,fetal Ca2+ transport in mice. These expression sites were co-localized with calbindin D9K in the yolk sac. In wildtype mice, placental TRPV6 mRNA increased 14-fold during the last 4 days of gestation, which coincides with fetal bone mineralization. These results provide the first in vivo evidence that TRPV6 is involved in maternal,fetal Ca2+ transport. We propose that TRPV6 functions as a Ca2+ entry pathway, which is critical for fetal Ca2+ homeostasis. [source] Influence of cardiac-specific overexpression of insulin-like growth factor 1 on lifespan and aging-associated changes in cardiac intracellular Ca2+ homeostasis, protein damage and apoptotic protein expressionAGING CELL, Issue 6 2007Qun Li Summary A fall in circulating levels of cardiac survival factor insulin-like growth factor 1 (IGF-1) contributes to cardiac aging. To better understand the role of IGF-1 in cardiac aging, we examined the influence of cardiac IGF-1 overexpression on lifespan, cardiomyocyte intracellular Ca2+ homeostasis, protein damage, apoptosis and expression of pro- and anti-apoptotic proteins in young and old mice. Mouse survival rate was constructed by the Kaplan,Meier curve. Intracellular Ca2+ was evaluated by fura-2 fluorescence. Protein damage was determined by protein carbonyl formation. Apoptosis was assessed by caspase-8 expression, caspase-3 and TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling) assay. Pro- and anti-apoptotic proteins including Bax, p53, pp53, Bcl2, Omi/HtrA2, apoptosis repressor with caspase recruitment domain (ARC) and X-linked inhibitor of apoptosis protein (XIAP) were assessed by Western blot. Aging decreased plasma in IGF-1 levels, elevated myocyte resting intracellular Ca2+ levels, reduced electrically stimulated rise in intracellular Ca2+ and delayed intracellular Ca2+ decay associated with enhanced protein carbonyl formation, caspase-8 expression and caspase-3 activity in FVB mice, all of which with the exception of elevated resting intracellular Ca2+ were attenuated by IGF-1. Aging up-regulated expression of Bax, Bcl2 and ARC, down-regulated XIAP expression and did not affect p53, pp53 and Omi/HtrA2. The IGF-1 transgene attenuated or nullified aging-induced changes in Bax, Bcl2 and XIAP. Our data suggest a beneficial role for IGF-1 in aging-induced survival, cardiac intracellular Ca2+ homeostasis, protein damage and apoptosis possibly related to pro- and anti-apoptotic proteins. [source] ,-Synuclein modulation of Ca2+ signaling in human neuroblastoma (SH-SY5Y) cellsJOURNAL OF NEUROCHEMISTRY, Issue 5 2009Nishani T. Hettiarachchi Abstract Parkinson's disease (PD) is characterized in part by the presence of ,-synuclein (,-syn) rich intracellular inclusions (Lewy bodies). Mutations and multiplication of the ,-synuclein gene (SNCA) are associated with familial PD. Since Ca2+ dyshomeostasis may play an important role in the pathogenesis of PD, we used fluorimetry in fura-2 loaded SH-SY5Y cells to monitor Ca2+ homeostasis in cells stably transfected with either wild-type ,-syn, the A53T mutant form, the S129D phosphomimetic mutant or with empty vector (which served as control). Voltage-gated Ca2+ influx evoked by exposure of cells to 50 mM K+ was enhanced in cells expressing all three forms of ,-syn, an effect which was due specifically to increased Ca2+ entry via L-type Ca2+ channels. Mobilization of Ca2+ by muscarine was not strikingly modified by any of the ,-syn forms, but they all reduced capacitative Ca2+ entry following store depletion caused either by muscarine or thapsigargin. Emptying of stores with cyclopiazonic acid caused similar rises of [Ca2+]i in all cells tested (with the exception of the S129D mutant), and mitochondrial Ca2+ content was unaffected by any form of ,-synuclein. However, only WT ,-syn transfected cells displayed significantly impaired viability. Our findings suggest that ,-syn regulates Ca2+ entry pathways and, consequently, that abnormal ,-syn levels may promote neuronal damage through dysregulation of Ca2+ homeostasis. [source] Partitioning of the plasma membrane Ca2+ -ATPase into lipid rafts in primary neurons: effects of cholesterol depletionJOURNAL OF NEUROCHEMISTRY, Issue 2 2007Lei Jiang Abstract Spatial and temporal alterations in intracellular calcium [Ca2+]i play a pivotal role in a wide array of neuronal functions. Disruption in Ca2+ homeostasis has been implicated in the decline in neuronal function in brain aging and in neurodegenerative disorders. The plasma membrane Ca2+ -ATPase (PMCA) is a high affinity Ca2+ transporter that plays a crucial role in the termination of [Ca2+]i signals and in the maintenance of low [Ca2+]i essential for signaling. Recent evidence indicates that PMCA is uniquely sensitive to its lipid environment and is stimulated by lipids with ordered acyl chains. Here we show that both PMCA and its activator calmodulin (CaM) are partitioned into liquid-ordered, cholesterol-rich plasma membrane microdomains or ,lipid rafts' in primary cultured neurons. Association of PMCA with rafts was demonstrated in preparations isolated by sucrose density gradient centrifugation and in intact neurons by confocal microscopy. Total raft-associated PMCA activity was much higher than the PMCA activity excluded from these microdomains. Depletion of cellular cholesterol dramatically inhibited the activity of the raft-associated PMCA with no effect on the activity of the non-raft pool. We propose that association of PMCA with rafts represents a novel mechanism for its regulation and, consequently, of Ca2+ signaling in the central nervous system. [source] Nitric oxide signalling in salivary glandsJOURNAL OF ORAL PATHOLOGY & MEDICINE, Issue 10 2002Dagnia Looms Abstract Nitric oxide (NO) plays multiple roles in both intracellular and extracellular signalling mechanisms with implications for health and disease. This review focuses on the role of NO signalling in salivary secretion. Attention will be paid primarily to endogenous NO production in acinar cells resulting from specific receptor stimulation and to NO-regulated Ca2+ homeostasis. Due to the fact that NO readily crosses membranes by simple diffusion, endogenous NO may play a physiological role in processes as diverse as modifying the secretory output, controlling blood supply to the gland, modulating transmitter output from nerve endings, participating in the host defence barrier, and affecting growth and differentiation of surrounding tissue. Furthermore, the role of NO in the pathogenesis of human oral diseases will be considered. [source] Recent advances in the chemistry of parainfluenza-1 (Sendai) virus inhibitorsMEDICINAL RESEARCH REVIEWS, Issue 4 2003Raffaele Saladino Abstract Purine and pyrimidine derivatives, antioxidants, fusion inhibitors, statins, prostaglandins, antibiotic nucleosides, inhibitors of Ca2+ homeostasis, carbohydrate derivatives, antisense polynucleotides and chimeras, are described as inhibitors of parainfluenza-1 (Sendai) viral infections. © 2003 Wiley Periodicals, Inc. Med Res Rev, 23, No. 4, 427,455, 2003 [source] Cystic fibrosis transmembrane conductance regulator in human muscle: Dysfunction causes abnormal metabolic recovery in exerciseANNALS OF NEUROLOGY, Issue 6 2010Anne-Marie Lamhonwah PhD Objective Individuals with cystic fibrosis (CF) have exercise intolerance and skeletal muscle weakness not solely attributable to physical inactivity or pulmonary function abnormalities. CF transmembrane conductance regulator (CFTR) has been demonstrated in human bronchial smooth and cardiac muscle. Using 31P-magnetic resonance spectroscopy of skeletal muscle, we showed CF patients to have lower resting muscle adenosine triphosphate and delayed phosphocreatine recovery times after high-intensity exercise, suggesting abnormal muscle aerobic metabolism; and higher end-exercise pH values, suggesting altered bicarbonate transport. Our objective was to study CFTR expression in human skeletal muscle. Methods and Results We studied CFTR expression in human skeletal muscle by Western blot with anti-CFTR antibody (Ab) L12B4 and demonstrated a single band with expected molecular weight of 168kDa. We isolated the cDNA by reverse transcription polymerase chain reaction and directly sequenced a 975bp segment (c. 3,600,4,575) that was identical to the human CFTR sequence. We showed punctate staining of CFTR in sarcoplasm and sarcolemma by immunofluorescence microscopy with L12B4 Ab and secondary Alexa 488-labeled Ab. We confirmed CFTR expression in the sarcotubular network and sarcolemma by electron microscopy, using immunogold-labeled anti-CFTR Ab. We observed activation of CFTR Cl, channels with iodide efflux, on addition of forskolin, 3-isobutyl-1-methyl-xanthine, and 8-chlorphenylthio,cyclic adenosine monophosphate, in wild-type C57BL/6J isolated muscle fibers in contrast to no efflux from mutant F508del-CFTR muscle. Interpretation We speculate that a defect in sarcoplasmic reticulum CFTR Cl, channels could alter the electrochemical gradient, causing dysregulation of Ca2+ homeostasis, for example, ryanodine receptor or sarco(endo)plasmic reticulum Ca2+ adenosine triphosphatases essential to excitation-contraction coupling leading to exercise intolerance and muscle weakness in CF. ANN NEUROL 2010 [source] The effect of exposure to high flux density static and pulsed magnetic fields on lymphocyte functionBIOELECTROMAGNETICS, Issue 6 2003Carlo Aldinucci Abstract We investigated whether a combination of static electromagnetic field (EMF) at a flux density of 4.75 T together with pulsed EMF at a flux density of 0.7 mT generated by an NMR apparatus (NMRF), could promote movements of Ca2+, cell proliferation, and the eventual production of proinflammatory cytokines in human lymphocytes as well as in Jurkat cells, after exposure to the field for 1 h. The same study was also performed after activation of cells with 5 ,g/ml phytohaemagglutinin (PHA) immediately before the exposure period. Our results clearly demonstrate that NMRF exposure increases the [Ca2+]i, without any proliferative, or activating, or proinflammatory effect on both normal and PHA stimulated lymphocytes. Accordingly, the levels of interferon ,, tumor necrosis factor ,, interleukin-1,, interleukin-2, and interleukin-6 remained unvaried after exposure. Exposure of Jurkat cells statistically decreased the [Ca2+]i and the proliferation. This is consistent with the low levels of IL-2 measured in supernatants of these cells after exposure. On the whole our data suggest that static and pulsed NMRF exposure contribute synergistically in the increase of the [Ca2+]i without any activating or proinflammatory effect either in normal or in PHA challenged lymphocytes. In Jurkat cells, by changing the properties of cell membranes, NMRF exposure can influence Ca2+ transport processes and hence Ca2+ homeostasis, causing a marked decrease of proliferation. Bioelectromagnetics 24:373,379, 2003. © 2003 Wiley-Liss, Inc. [source] Spectrin mutations in spinocerebellar ataxia (SCA)BIOESSAYS, Issue 8 2006Peter Bauer Recently, ,III spectrins have been recognized as ataxia disease genes, with the identification by Ikeda and co-workers of pathogenic mutations in the SPTBN2 gene in three large (and mapped) SCA5 families of American and European origin.(1) With their discovery, the large "Lincoln" family has been traced back to the underlying genetic defect for the slowly progressive cerebellar ataxia. In addition, the involvement of this component of the cytoskeleton directs attention towards the possible role of organelle stability during neurodegeneration. The findings suggest that the mechanical properties of neurons and their dynamics may be as important as altered Ca2+ homeostasis, transcriptional dysregulation, and impaired protein degradation in neurodegeneration conditions. BioEssays 28: 785,787, 2006. © 2006 Wiley Periodicals, Inc. [source] Calcium sensing and cell signaling processes in the local regulation of osteoclastic bone resorptionBIOLOGICAL REVIEWS, Issue 1 2004Mone Zaidi ABSTRACT The skeletal matrix in terrestrial vertebrates undergoes continual cycles of removal and replacement in the processes of bone growth, repair and remodeling. The osteoclast is uniquely important in bone resorption and thus is implicated in the pathogenesis of clinically important bone and joint diseases. Activated osteoclasts form a resorptive hemivacuole with the bone surface into which they release both acid and osteoclastic lysosomal hydrolases. This article reviews cell physiological studies of the local mechanisms that regulate the resorptive process. These used in vitro methods for the isolation, culture and direct study of the properties of neonatal rat osteoclasts. They demonstrated that both local microvascular agents and products of the bone resorptive process such as ambient Ca2+ could complement longer-range systemic regulatory mechanisms such as those that might be exerted through calcitonin (CT). Thus elevated extracellular [Ca2+], or applications of surrogate divalent cation agonists for Ca2+, inhibited bone resorptive activity and produced parallel increases in cytosolic [Ca2+], cell retraction and longer-term inhibition of enzyme release in isolated rat osteoclasts. These changes showed specificity, inactivation, and voltage-dependent properties that implicated a cell surface Ca2+ receptor (CaR) sensitive to millimolar extracellular [Ca2+]. Pharmacological, biophysical and immunochemical evidence implicated a ryanodine-receptor (RyR) type II isoform in this process and localized it to a unique, surface membrane site, with an outward-facing channel-forming domain. Such a surface RyR might function either directly or indirectly in the process of extracellular [Ca2+] sensing and in turn be modulated by cyclic adenosine diphosphate ribose (cADPr) produced by the ADP-ribosyl cyclase, CD38. The review finishes by speculating about possible detailed models for these transduction events and their possible interactions with other systemic mechanisms involved in Ca2+ homeostasis as well as the possible role of the RyR-based signaling mechanisms in longer-term cell regulatory processes. [source] Imaging ion flux and ion homeostasis in blood stage malaria parasitesBIOTECHNOLOGY JOURNAL, Issue 6 2009Petra Rohrbach Dr.Article first published online: 8 JUN 200 Abstract The steady-state regulation of intracellular levels of essential ions and ionic gradients is critical for almost all functions within a cell. Thus, it is not surprising to find that ions have been shown to play an important role in numerous parasitic processes, such as invasion, development and possibly drug resistance mechanisms. Live cell imaging has become a widespread technique to visualize and quantify several of these processes, including pH and Ca2+ homeostasis, in an effort to better understand the biology and physiology of cells. This is now also the case for many human pathogens. The aim of this review is to emphasize the importance of this technique and provide an overview of what we have learned so far, using the malaria parasite Plasmodium falciparum as a paradigm. [source] Thapsigargin resistance in human prostate cancer cellsCANCER, Issue 3 2006John P. O'Neill BS Abstract BACKGROUND. Thapsigargin (TG) is a potent inhibitor of sarcoplasmic/endoplasmic reticulum Ca2+ ATPases (SERCAs). TG-based prodrugs are being developed for the treatment of prostate cancer (PC). To develop optimal TG-based therapeutics it is important to understand the mechanisms of resistance to TG that may potentially occur in cancer cells. METHODS. DU145/TG and PC3/TG cells were derived from human PC DU145 and PC3 cells, respectively, by incremental exposure to TG. Growth assays, Western blot analyses, cDNA microarrays, semiquantitative and real-time polymerase chain reaction (PCR), Northern blot analyses, and immunohistochemistry were used to study these cells. RESULTS. DU145/TG cells are 1100-fold and PC3/TG cells are 1350-fold resistant to TG. Although expression of both SERCA and p-glycoprotein can mediate TG resistance in hamster cells, neither is modulated in DU145/TG cells. In contrast, in PC3/TG cells, SERCA, and not p-glycoprotein, is significantly overexpressed but cannot by itself account for the 1350-fold resistance to TG in these cells. Several genes not previously identified to be altered by TG selection are modulated in DU145/TG and PC3/TG cells. Furthermore, the spectrum of genes modulated in DU145/TG cells are distinct from that in PC3/TG cells, even though both cells are of prostate origin and share the same TG-resistant phenotype. CONCLUSIONS. PC cells can adapt to SERCA inhibition by TG. However, they demonstrate cell type-specific plasticity with respect to gene expression upon TG selection. Further, previously not described mechanisms of resistance appear to be recruited in the TG-resistant PC cells, which provide a novel model to study mechanisms of resistance and adaptation in PC on TG-mediated dysregulation of Ca2+ homeostasis. Cancer 2006. © 2006 American Cancer Society. [source] Novel role for polycystin-1 in modulating cell proliferation through calcium oscillations in kidney cellsCELL PROLIFERATION, Issue 3 2008G. Aguiari Objectives: Polycystin-1 (PC1), a signalling receptor regulating Ca2+ -permeable cation channels, is mutated in autosomal dominant polycystic kidney disease, which is typically characterized by increased cell proliferation. However, the precise mechanisms by which PC1 functions on Ca2+ homeostasis, signalling and cell proliferation remain unclear. Here, we investigated the possible role of PC1 as a modulator of non-capacitative Ca2+ entry (NCCE) and Ca2+ oscillations, with downstream effects on cell proliferation. Results and discussion: By employing RNA interference, we show that depletion of endogenous PC1 in HEK293 cells leads to an increase in serum-induced Ca2+ oscillations, triggering nuclear factor of activated T cell activation and leading to cell cycle progression. Consistently, Ca2+ oscillations and cell proliferation are increased in PC1-mutated kidney cystic cell lines, but both abnormal features are reduced in cells that exogenously express PC1. Notably, blockers of the NCCE pathway, but not of the CCE, blunt abnormal oscillation and cell proliferation. Our study therefore provides the first demonstration that PC1 modulates Ca2+ oscillations and a molecular mechanism to explain the association between abnormal Ca2+ homeostasis and cell proliferation in autosomal dominant polycystic kidney disease. [source] SERCA activity is required for timely progression through G1/SCELL PROLIFERATION, Issue 1 2001V. R. Simon Changes in intracellular Ca2+ correlate with specific events in the cell cycle. Here we investigated the role of Ca2+ in the G1 phase. HEK 293 cells were arrested in mitosis and subjected to short-term treatments that alter Ca2+ homeostasis prior to their release into G1. Treatment with thapsigargin (TG), an irreversible inhibitor of the sarco-endoplasmic reticulum Ca2+ ATPase (SERCA) lengthened the G1 phase. Moreover, TG treatment also resulted in a dramatic alteration in cellular morphology and attachment and in the reduction of MAPK activity and lower levels of cyclin D1 and cyclin E proteins. Treatments with reagents that transiently increase or decrease cytosolic Ca2+ or that temporarily inactivate SERCA did not alter any of the above parameters. Cells expressing a TG-resistant form of SERCA progressed normally through the G1/S transition after TG treatment. These results suggest that long-term SERCA inactivation affects cell cycle-dependent events and compromises progression through G1/S. [source] |