Ca2+ Efflux (ca2+ + efflux)

Distribution by Scientific Domains


Selected Abstracts


Voltage- and Ca2+ -activated potassium channels in Ca2+ store control Ca2+ release

FEBS JOURNAL, Issue 15 2006
Masayuki Yamashita
Ca2+ release from Ca2+ stores is a ,quantal' process; it terminates after a rapid release of stored Ca2+. To explain the quantal nature, it has been supposed that a decrease in luminal Ca2+ acts as a ,brake' on store release. However, the mechanism for the attenuation of Ca2+ efflux remains unknown. We show that Ca2+ release is controlled by voltage- and Ca2+ -activated potassium channels in the Ca2+ store. The potassium channel was identified as the big or maxi-K (BK)-type, and was activated by positive shifts in luminal potential and luminal Ca2+ increases, as revealed by patch-clamp recordings from an exposed nuclear envelope. The blockage or closure of the store BK channel due to Ca2+ efflux developed lumen-negative potentials, as revealed with an organelle-specific voltage-sensitive dye [DiOC5(3); 3,3'-dipentyloxacarbocyanine iodide], and suppressed Ca2+ release. The store BK channels are reactivated by Ca2+ uptake by Ca2+ pumps regeneratively with K+ entry to allow repetitive Ca2+ release. Indeed, the luminal potential oscillated bistably by ,45 mV in amplitude. Our study suggests that Ca2+ efflux-induced store BK channel closures attenuate Ca2+ release with decreases in counter-influx of K+. [source]


Altered distribution of mitochondria impairs calcium homeostasis in rat hippocampal neurons in culture

JOURNAL OF NEUROCHEMISTRY, Issue 1 2003
Guang Jian Wang
Abstract The specificity of Ca2+ signals is conferred in part by limiting changes in cytosolic Ca2+ to subcellular domains. Mitochondria play a major role in regulating Ca2+ in neurons and may participate in its spatial localization. We examined the effects of changes in the distribution of mitochondria on NMDA-induced Ca2+ increases. Hippocampal cultures were treated with the microtubule-destabilizing agent vinblastine, which caused the mitochondria to aggregate and migrate towards one side of the neuron. This treatment did not appear to decrease the energy status of mitochondria, as indicated by a normal membrane potential and pH gradient across the inner membrane. Moreover, electron microscopy showed that vinblastine treatment altered the distribution but not the ultrastructure of mitochondria. NMDA (200 µm, 1 min) evoked a greater increase in cytosolic Ca2+ in vinblastine-treated cells than in untreated cells. This increase did not result from impaired Ca2+ efflux, enhanced Ca2+ influx, opening of the mitochondrial permeability transition pore or altered function of endoplasmic reticulum Ca2+ stores. Ca2+ uptake into mitochondria was reduced by 53% in vinblastine-treated cells, as reported by mitochondrially targeted aequorin. Thus, the distribution of mitochondria maintained by microtubules is critical for buffering Ca2+ influx. A subset of mitochondria close to a Ca2+ source may preferentially regulate Ca2+ microdomains, set the threshold for Ca2+ -induced toxicity and participate in local ATP production. [source]


Transient rise in intracellular calcium produces a long-lasting increase in plasma membrane calcium pump activity in rat sensory neurons

JOURNAL OF NEUROCHEMISTRY, Issue 4 2002
William J. Pottorf II
Abstract The plasma membrane Ca2+ ATPase (PMCA) plays a major role in clearing Ca2+ from the neuronal cytoplasm. Calmodulin stimulates PMCA activity and for some isoforms this activation persists following clearance of Ca2+ owing to the slow dissociation of calmodulin. We tested the hypothesis that PMCA-mediated Ca2+ efflux from rat dorsal root ganglion (DRG) neurons in culture would remain stimulated following increases in intracellular Ca2+ concentration ([Ca2+]i). PMCA-mediated Ca2+ extrusion was recorded following brief trains of action potentials using indo-1-based photometry in the presence of cyclopiazonic acid. A priming stimulus that increased [Ca2+]i to 506 ± 28 nm (>15 min) increased the rate constant for [Ca2+]i recovery by 47 ± 3%. Ca2+ clearance from subsequent test stimuli remained accelerated for up to an hour despite removal of the priming stimulus and a return to basal [Ca2+]i. The acceleration depended on the magnitude and duration of the priming [Ca2+]i increase, but was independent of the source of Ca2+. Increases in [Ca2+]i evoked by prolonged depolarization, sustained trains of action potentials or activation of vanilloid receptors all accelerated Ca2+ efflux. We conclude that PMCA-mediated Ca2+ efflux in DRG neurons is a dynamic process in which intense stimuli prime the pump for the next Ca2+ challenge. [source]


Changes in extracellular K+ concentration modulate contractility of rat and rabbit cardiac myocytes via the inward rectifier K+ current IK1

THE JOURNAL OF PHYSIOLOGY, Issue 3 2004
Ron Bouchard
The mechanisms underlying the inotropic effect of reductions in [K+]o were studied using recordings of membrane potential, membrane current, cell shortening and [Ca2+]i in single, isolated cardiac myocytes. Three types of mammalian myocytes were chosen, based on differences in the current density and intrinsic voltage dependence of the inwardly rectifying background K+ current IK1 in each cell type. Rabbit ventricular myocytes had a relatively large IK1 with a prominent negative slope conductance whereas rabbit atrial cells expressed much smaller IK1, with little or no negative slope conductance. IK1 in rat ventricle was intermediate in both current density and slope conductance. Action potential duration is relatively short in both rabbit atrial and rat ventricular myocytes, and consequently both cell types spend much of the duty cycle at or near the resting membrane potential. Rapid increases or decreases of [K+]o elicited significantly different inotropic effects in rat and rabbit atrial and ventricular myocytes. Voltage-clamp and current-clamp experiments showed that the effects on cell shortening and [Ca2+]i following changes in [K+]o were primarily the result of the effects of alterations in IK1, which changed resting membrane potential and action potential waveform. This in turn differentially altered the balance of Ca2+ efflux via the sarcolemmal Na+,Ca2+ exchanger, Ca2+ influx via voltage-dependant Ca2+ channels and sarcoplasmic reticulum (SR) Ca2+ release in each cell type. These results support the hypothesis that the inotropic effect of alterations of [K+]o in the heart is due to significant non-linear changes in the current,voltage relation for IK1 and the resulting modulation of the resting membrane potential and action potential waveform. [source]