| |||
Ca2+ Channel Activity (ca2+ + channel_activity)
Selected AbstractsKMUP-1 activates BKCa channels in basilar artery myocytes via cyclic nucleotide-dependent protein kinasesBRITISH JOURNAL OF PHARMACOLOGY, Issue 6 2005Bin-Nan Wu This study investigated whether KMUP-1, a synthetic xanthine-based derivative, augments the delayed-rectifier potassium (KDR)- or large-conductance Ca2+ -activated potassium (BKCa) channel activity in rat basilar arteries through protein kinase-dependent and -independent mechanisms. Cerebral smooth muscle cells were enzymatically dissociated from rat basilar arteries. Conventional whole cell, perforated and inside-out patch-clamp electrophysiology was used to monitor K+ - and Ca2+ channel activities. KMUP-1 (1 ,M) had no effect on the KDR current but dramatically enhanced BKCa channel activity. This increased BKCa current activity was abolished by charybdotoxin (100 nM) and iberiotoxin (100 nM). Like KMUP-1, the membrane-permeable analogs of cGMP (8-Br-cGMP) and cAMP (8-Br-cAMP) enhanced the BKCa current. BKCa current activation by KMUP-1 was markedly inhibited by a soluble guanylate cyclase inhibitor (ODQ 10 ,M), an adenylate cyclase inhibitor (SQ 22536 10 ,M), competitive antagonists of cGMP and cAMP (Rp-cGMP, 100 ,M and Rp-cAMP, 100 ,M), and cGMP- and cAMP-dependent protein kinase inhibitors (KT5823, 300 nM and KT5720, 300 nM). Voltage-dependent L-type Ca2+ current was significantly suppressed by KMUP-1 (1 ,M), and nearly abolished by a calcium channel blocker (nifedipine, 1 ,M). In conclusion, KMUP-1 stimulates BKCa currents by enhancing the activity of cGMP-dependent protein kinase, and in part this is due to increasing cAMP-dependent protein kinase. Physiologically, this activation would result in the closure of voltage-dependent calcium channels and the relaxation of cerebral arteries. British Journal of Pharmacology (2005) 146, 862,871. doi:10.1038/sj.bjp.0706387 [source] The Drosophila cacts2 mutation reduces presynaptic Ca2+ entry and defines an important element in Cav2.1 channel inactivationEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2006G. T. Macleod Abstract Voltage-gated Ca2+ channels in nerve terminals open in response to action potentials and admit Ca2+, the trigger for neurotransmitter release. The cacophony gene encodes the primary presynaptic voltage-gated Ca2+ channel in Drosophila motor-nerve terminals. The cacts2 mutant allele of cacophony is associated with paralysis and reduced neurotransmission at non-permissive temperatures but the basis for the neurotransmission deficit has not been established. The cacts2 mutation occurs in the cytoplasmic carboxyl tail of the ,1 -subunit, not within the pore-forming trans-membrane domains, making it difficult to predict the mutation's impact. We applied a Ca2+ -imaging technique at motor-nerve terminals of mutant larvae to test the hypothesis that the neurotransmission deficit is a result of impaired Ca2+ entry. Presynaptic Ca2+ signals evoked by single and multiple action potentials showed a temperature-dependent reduction. The amplitude of the reduction was sufficient to account for the neurotransmission deficit, indicating that the site of the cacts2 mutation plays a role in Ca2+ channel activity. As the mutation occurs in a motif conserved in mammalian high-voltage-activated Ca2+ channels, we used a heterologous expression system to probe the effect of this mutation on channel function. The mutation was introduced into rat Cav2.1 channels expressed in human embryonic kidney cells. Patch-clamp analysis of mutant channels at the physiological temperature of 37 °C showed much faster inactivation rates than for wild-type channels, demonstrating that the integrity of this motif is critical for normal Cav2.1 channel inactivation. [source] RESEARCH ARTICLE: Fungicidal activity of amiodarone is tightly coupled to calcium influxFEMS YEAST RESEARCH, Issue 3 2008Sabina Muend Abstract The antiarrhythmic drug amiodarone has microbicidal activity against fungi, bacteria and protozoa. In Saccharomyces cerevisiae, amiodarone triggers an immediate burst of cytosolic Ca2+, followed by cell death markers. Ca2+ transients are a common response to many forms of environmental insults and toxic compounds, including osmotic and pH shock, endoplasmic reticulum stress, and high levels of mating pheromone. Downstream signaling events involving calmodulin, calcineurin and the transcription factor Crz1 are critical in mediating cell survival in response to stress. In this study we asked whether amiodarone induced Ca2+ influx was beneficial, toxic or a bystander effect unrelated to the fungicidal effect of the drug. We show that downregulation of Ca2+ channel activity in stationary phase cells correlates with increased resistance to amiodarone. In actively growing cells, extracellular Ca2+ modulated the size and shape of the Ca2+ transient and directly influenced amiodarone toxicity. Paradoxically, protection was achieved both by removal of external Ca2+ or by adding high levels of CaCl2 (10 mM) to block the drug induced Ca2+ burst. Our results support a model in which the fungicidal activity of amiodarone is mediated by Ca2+ stress, and highlight the pathway of Ca2+ mediated cell death as a promising target for antifungal drug development. [source] Glutamate-induced internalization of Cav1.3 L-type Ca2+ channels protects retinal neurons against excitotoxicityTHE JOURNAL OF PHYSIOLOGY, Issue 6 2010Fengxia Mizuno Glutamate-induced rise in the intracellular Ca2+ level is thought to be a major cause of excitotoxic cell death, but the mechanisms that control the Ca2+ overload are poorly understood. Using immunocytochemistry, electrophysiology and Ca2+ imaging, we show that activation of ionotropic glutamate receptors induces a selective internalization of Cav1.3 L-type Ca2+ channels in salamander retinal neurons. The effect of glutamate on Cav1.3 internalization was blocked in Ca2+ -free external solution, or by strong buffering of internal Ca2+ with BAPTA. Downregulation of L-type Ca2+ channel activity in retinal ganglion cells by glutamate was suppressed by inhibitors of dynamin-dependent endocytosis. Stabilization of F-actin by jasplakinolide significantly reduced the ability of glutamate to induce internalization suggesting it is mediated by Ca2+ -dependent reorganization of actin cytoskeleton. We showed that the Cav1.3 is the primary L-type Ca2+ channel contributing to kainate-induced excitotoxic death of amacrine and ganglion cells. Block of Cav1.3 internalization by either dynamin inhibition or F-actin stabilization increased vulnerability of retinal amacrine and ganglion cells to kainate-induced excitotoxicity. Our data show for the first time that Cav1.3 L-type Ca2+ channels are subject to rapid glutamate-induced internalization, which may serve as a negative feedback mechanism protecting retinal neurons against glutamate-induced excitotoxicity. [source] Electrophysiological effects of endothelin-1 and their relationship to contraction in rat renal arterial smooth muscleBRITISH JOURNAL OF PHARMACOLOGY, Issue 4 2000Luisa C Betts The electophysiological effects of endothelin-1 (ET-1) and their relationship to contraction remain unclear in the renal circulation. Using endotheliumdenuded arteries from the main branch of the renal artery proximal to the kidney of the rat, we have examined its effects on tension and conducted parallel patch-clamp measurements using freshly isolated smooth muscle cells from this tissue. Pharmacological experiments revealed that ET-1 produced constriction of renal arteries dependent on the influx of extracellular Ca2+, mediated solely through ETA receptor stimulation. Current-clamp experiments revealed that renal arterial myocytes had a resting membrane potential of ,32 mV, with the majority of cells exhibiting spontaneous transient hyperpolarizations (STHPs). Application of ET-1 produced depolarization and in those cells exhibiting STHPs, either caused their inhibition or made them occur regularly. Under voltage-clamp conditions cells were observed to exhibit spontaneous transient outward currents (STOCs) inhibited by iberiotoxin. Application of voltage-ramps revealed an outward current activated at ,,30 mV, sensitive to both 4-AP and TEA. Taken together these results suggest that renal arterial myocytes possess both delayed rectifying K+ (KV) and Ca2+ -activated K+ (BKCa) channels. Under voltage-clamp, ET-1 attenuated the outward current and reduced the magnitude and incidence of STOCs: effects mediated solely as a consequence of ETA receptor stimulation. Thus, in conclusion, activation of ETA receptors by ET-1 causes inhibition of KV and BKCa channel activity, which could promote and/or maintain membrane depolarization. This effect is likely to favour L-type Ca2+ channel activity providing an influx pathway for extracellular Ca2+ essential for contraction. British Journal of Pharmacology (2000) 130, 787,796; doi:10.1038/sj.bjp.0703377 [source] |