CPP

Distribution by Scientific Domains


Selected Abstracts


Chronic social stress in adolescence influenced both amphetamine conditioned place preference and locomotor sensitization

DEVELOPMENTAL PSYCHOBIOLOGY, Issue 5 2008
I. Z. Mathews
Abstract We previously reported that chronic social stress (SS) in adolescence, but not in adulthood, increased the locomotor-activating effects of nicotine in females, and not males, when tested in adulthood. However, SS rats had decreased locomotor response to nicotine when tested in adolescence. Here, we investigated age-related changes in the effects of SS on both conditioned place preference (CPP) and locomotor sensitization to amphetamine. In the CPP experiment, SS females tested in adolescence had increased preference for the 1.0 mg/kg dose of amphetamine, whereas SS rats of both sexes showed a decrease in CPP for the 0.5 mg/kg dose when tested as adults. Irrespective of time of testing, SS males and females had enhanced locomotor sensitization compared to controls. Thus, adolescent SS produced both immediate and enduring effects on behavioral responses to amphetamine, likely by altering the development of the mesocorticolimbic dopamine system, which holds implications for vulnerability to addiction. © 2008 Wiley Periodicals, Inc. Dev Psychobiol 50: 451,459, 2008. [source]


PRECLINICAL STUDY: Electroacupuncture treatment reverses morphine-induced physiological changes in dopaminergic neurons within the ventral tegmental area

ADDICTION BIOLOGY, Issue 4 2009
Ling Hu
ABSTRACT Chronic morphine administration decreases the size of dopamine (DA) neurons in the ventral tegmental area (VTA). These transient morphological changes are accompanied by a reduced sensitivity of morphine-induced conditioned place preference (CPP) after chronic exposure to the drug. In this study we examined alterations in the firing rate of DAergic neurons by means of extracellular recording following chronic morphine exposure and applied 100 Hz electroacupuncture (EA) treatment to reverse the reduced firing rate of these neurons. In the first set of experiments we show that in rats, which received chronic morphine treatment for 14 days, a small dose of morphine was not able to induce a CPP response anymore. However, the sensitivity to morphine was reinstated by consecutive EA treatment for 10 days. The electrophysiological response of VTA DA neurons to morphine was markedly reduced in chronic morphine-treated rats compared to saline-treated controls. A substantial recovery of the reactivity of VTA DA neurons to morphine was observed in rats that received 100 Hz EA for 10 days. Our findings suggest that 100 Hz EA is a potential therapy for the treatment of opiate addiction by normalizing the activity of VTA DA neurons. [source]


PRECLINICAL STUDY: Acquisition and reinstatement of MDMA-induced conditioned place preference in mice pre-treated with MDMA or cocaine during adolescence

ADDICTION BIOLOGY, Issue 4 2009
Manuel Daza-Losada
ABSTRACT Those who take ecstasy are more likely to consume other drugs than non-users with cocaine abuse being reported by 75.5% of high school student MDMA (± 3,4-methylenedioxymetamphetamine hydrochloride) users. The aim of this work was to evaluate the effects of exposure during adolescence to MDMA, cocaine or to both drugs on the MDMA-induced conditioned place preference (CPP) in adult mice. Animals received two daily administrations of saline, 10 mg/kg of MDMA, 25 mg/kg of cocaine or 10 mg/kg of MDMA plus 25 mg/kg of cocaine over 3 days (from PD28 to 30). Three weeks after pre-treatment, the MDMA-induced CPP procedure was initiated (PD52). Acquisition of CPP was induced with a sub-threshold dose of MDMA (1.25 mg/kg) only in animals treated during adolescence with MDMA alone. Preference was established in all the groups after conditioning with 10 mg/kg of MDMA, while the time required to achieve extinction was longer in those pre-treated with cocaine or MDMA alone (46 and 28 sessions, respectively). Moreover, preference was reinstated with progressively lower priming doses of MDMA in mice pre-treated with MDMA or cocaine alone. These results demonstrate that early exposure to MDMA or cocaine induces long-lasting changes that last until adulthood and modify the response of animals to MDMA. [source]


PRECLINICAL STUDY: Modulation of MDMA-induced behavioral and transcriptional effects by the delta opioid antagonist naltrindole in mice

ADDICTION BIOLOGY, Issue 3 2009
Emilie Belkaļ
ABSTRACT The delta opioid system is involved in the behavioral effects of various drugs of abuse. However, only a few studies have focused on the possible interactions between the opioid system and the effects of 3,4-methylenedioxymethamphetamine (MDMA). In order to examine the possible role of the delta opioid system in MDMA-induced behaviors in mice, locomotor activity and conditioned place preference (CPP) were investigated in the presence of naltrindole (NTI), a selective delta opioid antagonist. Moreover, the consequences of acute and chronic MDMA administration on pro-enkephalin (Penk) and pro-opiomelanocortin (Pomc) gene expression were assessed by real-time quantitative polymerase chain reaction (QPCR). The results showed that, after acute MDMA administration (9 mg/kg; i.p.), NTI (5 mg/kg, s.c.) was able to totally block MDMA-induced hyperlocomotion. Penk gene expression was not modulated by acute MDMA, but a decrease of Pomc gene expression was observed, which was not antagonized by NTI. Administration of the antagonist prevented the acquisition of MDMA-induced CPP, suggesting an implication of the delta opioid receptors in this behavior. Following chronic MDMA treatment, only the level of Pomc was modulated. The observed increase was totally blocked by NTI pre-treatment. All these results confirm the interactions between the delta opioid system (receptors and peptides) and the effects of MDMA. [source]


PRECLINICAL STUDY: The effect of naltrexone on amphetamine-induced conditioned place preference and locomotor behaviour in the rat

ADDICTION BIOLOGY, Issue 3 2009
Jenny Häggkvist
ABSTRACT Whereas amphetamine and other psychostimulants primarily act on the dopamine system, there is also evidence that other neurotransmitter systems, such as the endogenous opioid system, modulate psychostimulant-induced effects. Several studies have investigated the role of opioid antagonists on cocaine-induced conditioned place preference (CPP), but there is limited information about the interaction with amphetamines. The aim of the present study was to investigate the effect of the opioid receptor antagonist, naltrexone (NTX) on the conditioning, expression and reinstatement of amphetamine-induced place preference. In addition, the effect of NTX on locomotor behaviour was measured during all sessions. During training, animals were conditioned with amphetamine (2 mg/kg) to induce place preference. In order to extinguish the conditioned behaviour, animals received saline for 12 days. Reinstatement of CPP was induced by a priming dose of amphetamine (0.5 mg/kg). The interaction of NTX and amphetamine was evaluated using three paradigms of CPP: with NTX (vehicle, 0.3, 1.0 and 3.0 mg/kg) administered either 30 minutes prior to amphetamine conditioning, or 30 minutes before the expression, or 30 minutes before the amphetamine priming to induce reinstatement. Naltrexone had no effect on the conditioning, the expression or the reinstatement induced by a priming dose of amphetamine. Further, NTX by itself did not induce place preference or place aversion. In contrast, NTX significantly attenuated the locomotor response to a priming dose of amphetamine without affecting general locomotor behaviour. The results suggest differences in opioid modulation of amphetamine-induced behaviours in the rat. [source]


PRECLINICAL STUDY: Pentylenetetrazole-induced status epilepticus following training does not impair expression of morphine-induced conditioned place preference

ADDICTION BIOLOGY, Issue 2 2009
Jie Zhang
ABSTRACT Learning and memory play an important role in morphine addiction. Status epilepticus (SE) can impair the spatial and emotional learning and memory. However, little is known about the effects of SE on morphine-induced conditioned place preference (CPP). The present study was designed to investigate the effects of SE on morphine CPP, with food CPP being used as a control. The effects of SE on spatial memory in the Morris water maze (MWM) and Y-maze were investigated. SE was induced in adult mice using intraperitoneal injection of pentylenetetrazole; control mice received saline. The data indicated that SE had no effects on the formation of morphine CPP; however, the formation of food CPP was blocked by SE. Meanwhile, spatial memory assayed in the MWM and Y-maze was impaired by SE. In addition, the data demonstrated that SE did not cause a lasting disturbance of motor activity nor a change in the mice's appetite. These results suggested that although SE had no effects on morphine CPP, there was impaired food CPP and spatial memory in both the MWM and the Y-maze. The mechanisms underlying memory process of morphine CPP may be different from other types of memory. [source]


PRECLINICAL STUDY: Proteomic analysis of methamphetamine-induced reinforcement processes within the mesolimbic dopamine system

ADDICTION BIOLOGY, Issue 3-4 2008
Moon Hee Yang
ABSTRACT Methamphetamine (MAP) is a commonly used, addictive drug, and a powerful stimulant that dramatically affects the central nervous system. In this study, we used the conditioned place preference (CPP) paradigm in order to study the reinforcing properties of MAP and the herewith associated changes in proteins within the mesolimbic dopamine system. A CPP was induced by MAP after three intermittent intraperitoneal injections (1 mg/kg) in rats and protein profiles in the nucleus accumbens, striatum, prefrontal cortex, cingulate cortex and hippocampus were compared with a saline-treated control group. In addition, a group of animals was run through extinction and protein profiles were compared with a non-extinguished group. Protein screening was conducted using two-dimensional electrophoresis analysis which identified 27 proteins in the group that showed MAP-induced CPP. Some of the proteins were confirmed by Western lot analysis. Identified proteins had functions related to the cytoskeleton, transport/endocytosis or exocytosis (e.g. profilin-2 and syntaxin-binding protein), and signal transduction, among others. [source]


ORIGINAL INVESTIGATIONS ON CPP: Effects of scopolamine on morphine-induced conditioned place preference in mice

ADDICTION BIOLOGY, Issue 3-4 2007
Hua Tan
ABSTRACT It is well known that the cholinergic system plays a crucial role in learning and memory. Psychopharmacological studies in humans and animals have shown that a systemic cholinergic blockade may induce deficits in learning and memory. Accumulated studies have indicated that learning and memory play an important role in drug addition. In the present study, in order to get a further understanding about the functions of the cholinergic system in drug-related learning and memory, we examined the effects of scopolamine (0.5, 1.0 and 2.0 mg/kg) on morphine-induced conditioned place preference (CPP). Two kinds of morphine exposure durations (4 days and 12 days) were used. The main finding was that all doses of scopolamine enhanced the extinction of morphine-induced CPP in mice treated with morphine for 12 days. However, in mice treated with morphine for 4 days, all doses of scopolamine did not inhibit morphine-induced CPP. The highest dose (2.0 mg/kg) of scopolamine even significantly delayed the extinction of morphine-induced CPP. Our results suggest that the effects of a systemic cholinergic blockade on morphine-induced CPP depend on the morphine exposure time. [source]


Effects of MPEP on expression of food-, MDMA- or amphetamine-conditioned place preference in rats

ADDICTION BIOLOGY, Issue 3 2005
Volker Herzig
Recent studies have revealed the effectiveness of 2-methyl-6-(phenylethynyl)pyridine (MPEP), a highly selective antagonist of metabotropic glutamate receptors subtype 5 (mGluR5), in conditioned drug reward. In a previous study we showed that MPEP blocks expression of context-conditioned morphine- but not cocaine reward in the rat. The present study now examines the effectiveness of MPEP in the expression of context-conditioned food, MDMA (,ecstasy?) or amphetamine reward. Therefore, three groups of rats were conditioned either to food, MDMA or amphetamine in the conditioned place preference (CPP) paradigm. After conditioning, CPP expression and locomotion were determined simultaneously in the presence and absence of the respective reward (i.e. food or drug), or after application of 50?mg/kg MPEP (the dose that was most effective in reducing morphine CPP expression in our previous study). As a result, MPEP reduced locomotion in all groups. Furthermore, only expression of amphetamine CPP was inhibited by MPEP, while expression of food and MDMA CPP was not affected, suggesting that the MPEP-induced inhibition of amphetamine CPP expression was not causally linked to the reduction of locomotion. Overall, we conclude that MPEP reduces expression of context-conditioned amphetamine but not MDMA or food reward. [source]


Utilization of the Ottawa Ankle Rules by Nurses in a Pediatric Emergency Department

ACADEMIC EMERGENCY MEDICINE, Issue 2 2002
Anna Karpas MD
Objectives: To determine the ability of pediatric emergency department (ED) nurses to accurately apply the Ottawa Ankle Rules (OAR) and to evaluate whether the rate of negative ankle radiographs can be reduced by incorporating the OAR into an existing collaborative practice protocol (CPP). Methods: The authors' ED currently uses a CPP in which patients with ankle pain, swelling, deformity, or decreased range of motion on primary nursing assessment undergo radiography prior to physician evaluation. A cross-sectional study was conducted between June and November 2000. Patients aged 5-19 years with an ankle injury who met at least one of the CPP criteria were eligible for enrollment. The OAR were applied by the primary nurse after initial assessment. Ankle radiographs were ordered for all enrolled patients. The interobserver variability between nurses was evaluated on a random sample. Results: One hundred ninety subjects were enrolled in the study. The OAR were correctly interpreted by nurses in 98.4% of subjects. Agreement on the interobserver reliability sample was 100%. Of the 185 subjects, 31 (16.8%) had positive radiographs. Positive OAR results were noted in 30 of 31 subjects with positive radiographs. The sensitivity of the OAR was 97% (95% CI = 0.82 to 0.99) with a specificity of 25% (95% CI = 0.18 to 032). Use of the OAR would have reduced the radiography rate by 21%. Conclusions: Trained nurses can accurately apply and interpret the OAR. The incorporation of the OAR into the nursing assessment of children with acute ankle injuries may reduce the number of radiographs ordered. [source]


NMDA receptors are essential for the acquisition, but not expression, of conditional fear and associative spike firing in the lateral amygdala

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2004
Ki A. Goosens
Abstract We examined the contribution of N -methyl- D -aspartate (NMDA) receptors (NMDARs) to the acquisition and expression of amygdaloid plasticity and Pavlovian fear conditioning using single-unit recording techniques in behaving rats. We demonstrate that NMDARs are essential for the acquisition of both behavioral and neuronal correlates of conditional fear, but play a comparatively limited role in their expression. Administration of the competitive NMDAR antagonist ±-3-(2-carboxypiperazin-4-yl) propyl-1-phosphonic acid (CPP) prior to auditory fear conditioning completely abolished the acquisition of conditional freezing and conditional single-unit activity in the lateral amygdala (LA). In contrast, CPP given prior to extinction testing did not affect the expression of conditional single-unit activity in LA, despite producing deficits in conditional freezing. Administration of CPP also blocked the induction of long-term potentiation in the amygdala. Together, these data suggest that NMDARs are essential for the acquisition of conditioning-related plasticity in the amygdala, and that NMDARs are more critical for regulating synaptic plasticity and learning than routine synaptic transmission in the circuitry supporting fear conditioning. [source]


Differential roles of corticotropin-releasing factor receptor subtypes 1 and 2 in opiate withdrawal and in relapse to opiate dependence

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 12 2000
Lin Lu
Abstract The possible effects on the morphine withdrawal signs of the nonspecific corticotropin-releasing factor (CRF) receptor antagonist ,-helical CRF, the selective CRF receptor subtype 1 antagonist CP-154,526 and the selective CRF receptor subtype 2 antagonist antisauvagine-30 (AS-30) were investigated in rats. The most withdrawal signs, including jumping, teeth chatter, writhing, shakes, lacrimation, piloerection, irritability and diarrhoea, were attenuated by pretreatment with ,-helical CRF (10 µg i.c.v.) and CP-154,526 (30 mg/kg i.p.). However, no morphine withdrawal signs except for diarrhea were significantly affected by pretreatment with AS-30 (10 µg, i.c.v.). To investigate the possible role of different CRFR antagonists (,-helical CRF, CP-154,526 and AS-30) in relapse to opiate dependence, the 28-day extinction of morphine-conditioned place preference (CPP) was used. The morphine-CPP disappeared following a 28-day extinction and then was reactivated by a single injection of 10 mg/kg morphine. Pretreatment with ,-helical CRF (10 µg, i.c.v.) and CP-154,526 (30 mg/kg, i.p.) could significantly block this reactivation of morphine-CPP. In contrast, pretreatment with AS-30 (1 or 10 µg i.c.v.) did not affect this reactivation of morphine-CPP. The present study demonstrated that activation of the CRF receptor is involved in morphine withdrawal signs and relapse to morphine dependence, and that the role of CRF receptor subtypes 1 and 2 in withdrawal and reactivation of morphine dependence is not identical. CRF receptor subtype 1, but not subtype 2, is largely responsible for the action of the CRF system on opiate dependence. These results suggest that the CRF receptor antagonists, particularly the CRF receptor subtype 1 antagonist, might be of some value in the treatment and prevention of drug dependence. [source]


Reducing conditions significantly attenuate the neuroprotective efficacy of competitive, but not other NMDA receptor antagonists in vitro

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2000
Ashley K. Pringle
Abstract Inappropriate activation of NMDA receptors during a period of cerebral ischaemia is a crucial event in the pathway leading to neuronal degeneration. However, significant research has failed to deliver a clinically active NMDA receptor antagonist, and competitive NMDA antagonists are ineffective in many experimental models of ischaemia. The NMDA receptor itself has a number of modulatory sites which may affect receptor function under ischaemic conditions. Using rat organotypic hippocampal slice cultures we have investigated whether the redox modulatory site affects the neuroprotective efficacy of NMDA receptor antagonists against excitotoxicity and experimental ischaemia (OGD). NMDA toxicity was significantly enhanced in cultures pretreated with a reducing agent. The noncompetitive antagonist MK-801 and a glycine-site blocker were equally neuroprotective in both normal and reduced conditions, but there was a significant rightward shift in the dose,response curves of the competitive antagonists APV and CPP and the uncompetitive antagonist memantine. OGD produced neuronal damage predominantly in the CA1 region, which was prevented by MK-801 and memantine, but not by APV or CPP. Inclusion of an oxidizing agent during the period of OGD had no effect alone, but significantly enhanced the neuroprotective potency of the competitive antagonists. These data clearly demonstrate that chemical reduction of the redox modulatory site of the NMDA receptor decreases the ability of competitive antagonists to block NMDA receptor-mediated neuronal damage, and that the reducing conditions which occur during simulated ischaemia are sufficient to produce a similar effect. This may have important implications for the design of future neuroprotective agents. [source]


Suppression of c-fos induction in the nucleus accumbens prevents acquisition but not expression of morphine-conditioned place preference

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 9 2000
Bryan K. Tolliver
Abstract The c-fos immediate-early gene is induced by morphine and other drugs of abuse in the nucleus accumbens (NAc), a mesolimbic region implicated in drug abuse and reward. This study examined the role of c-fos in the acquisition and expression of the conditioned place paradigm (CPP) in the rat by suppressing Fos protein expression with c-fos antisense oligodeoxynucleotides (ODNs). CPP was completely prevented by c-fos antisense ODN infused bilaterally into the NAc prior to each systemic morphine injection, whereas sense and missense NAc injections had no effect on CPP. NAc administration of c-fos antisense ODN after the last systemic morphine conditioning session did not affect the expression of morphine-CPP. These results suggest that c-fos expression in NAc is necessary for the acquisition but not expression of morphine-CPP, and they have important implications for understanding conditioned behaviours and drug craving and addiction. [source]


TOWARD THE EVOLUTIONARY GENOMICS OF GAMETOPHYTIC DIVERGENCE: PATTERNS OF TRANSMISSION RATIO DISTORTION IN MONKEYFLOWER (MIMULUS) HYBRIDS REVEAL A COMPLEX GENETIC BASIS FOR CONSPECIFIC POLLEN PRECEDENCE

EVOLUTION, Issue 12 2008
Lila Fishman
Conspecific pollen precedence (CPP) is a major component of reproductive isolation between many flowering plant taxa and may reveal mechanisms of gametophytic evolution within species, but little is known about the genetic basis and evolutionary history of CPP. We systematically investigated the genetic architecture of CPP using patterns of transmission ratio distortion (TRD) in F2 and backcross hybrids between closely related species of Mimulus (Phrymaceae) with divergent mating systems. We found that CPP in Mimulus hybrids was polygenic and was the majority source of interspecific TRD genome-wide, with at least eight genomic regions contributing to the transmission advantage of M. guttatus pollen grains on M. guttatus styles. In aggregate, these male-specific transmission ratio distorting loci (TRDLs) were more than sufficient to account for the 100% precedence of pure M. guttatus pollen over M. nasutus pollen in mixed pollinations of M. guttatus. All but one of these pollen TRDLs were style-dependent; that is, we observed pollen TRD in F1 and/or M. guttatus styles, but not in M. nasutus styles. These findings suggest that species-specific differences in pollen tube performance accumulate gradually and may have been driven by coevolution between pollen and style in the predominantly outcrossing M. guttatus. [source]


Casein phosphopeptide promotion of calcium uptake in HT-29 cells , relationship between biological activity and supramolecular structure

FEBS JOURNAL, Issue 19 2007
Claudia Gravaghi
Casein phosphopeptides (CPPs) form aggregated complexes with calcium phosphate and induce Ca2+ influx into HT-29 cells that have been shown to be differentiated in culture. The relationship between the aggregation of CPPs assessed by laser light scattering and their biological effect was studied using the CPPs ,-CN(1,25)4P and ,s1 -CN(59,79)5P, the commercial mixture CPP DMV, the ,cluster sequence' pentapeptide, typical of CPPs, and dephosphorylated ,-CN(1,25)4P, [,-CN(1,25)0P]. The biological effect was found to be: (a) maximal with ,-CN(1,25)4P and null with the ,cluster sequence'; (b) independent of the presence of inorganic phosphate; and (c) maximal at 4 mmol·L,1 Ca2+. The aggregation of CPP had the following features: (a) rapid occurrence; (b) maximal aggregation by ,-CN(1,25)4P with aggregates of 60 nm hydrodynamic radius; (c) need for the concomitant presence of Ca2+ and CPP for optimal aggregation; (d) lower aggregation in Ca2+ -free Krebs/Ringer/Hepes; (e) formation of bigger aggregates (150 nm radius) with ,-CN(1,25)0P. With both ,-CN(1,25)4P and CPP DMV, the maximum biological activity and degree of aggregation were reached at 4 mmol·L,1 Ca2+. [source]


Nitrate-dependent anaerobic carbon monoxide oxidation by aerobic CO-oxidizing bacteria

FEMS MICROBIOLOGY ECOLOGY, Issue 1 2006
G.M. King
Abstract Two dissimilatory nitrate-reducing (Burkholderia xenovorans LB400 and Xanthobacter sp. str. COX) and two denitrifying isolates (Stappia aggregata IAM 12614 and Bradyrhizobium sp. str. CPP), previously characterized as aerobic CO oxidizers, consumed CO at ecologically relevant levels (<100 ppm) under anaerobic conditions in the presence, but not absence, of nitrate. None of the isolates were able to grow anaerobically with CO as a carbon or energy source, however, and nitrate-dependent anaerobic CO oxidation was inhibited by headspace concentrations >100,1000 ppm. Surface soils collected from temperate, subtropical and tropical forests also oxidized CO under anaerobic conditions with no lag. The observed activity was 25,60% less than aerobic CO oxidation rates, and did not appear to depend on nitrate. Chloroform inhibited anaerobic but not aerobic activity, which suggested that acetogenic bacteria may have played a significant role in forest soil anaerobic CO uptake. [source]


Dorsal/ventral hippocampus, fornix, and conditioned place preference

HIPPOCAMPUS, Issue 2 2001
Janina Ferbinteanu
Abstract Conditioned place preference (CPP) is a learning paradigm requiring formation of associations between reward and particular locations. White and McDonald (Behav Brain Res 1993;55:269,281) demonstrated that amygdala (AMG) lesions impair, while fornix (Fx) lesions enhance learning of this task. In the present experiments, we replicated the effects of AMG and Fx lesions, but we also found that complete hippocampal (HPC) lesions interfere with normal performance. Thus, the effects of Fx and HPC lesions on CPP are opposite. This is in contrast with spatial learning in the water maze. Because it has been demonstrated that damage of dorsal HPC interferes to a greater extent with spatial learning than damage of ventral HPC, we also tested animals with either dorsal or ventral HPC disruptions on CPP. Lesions limited to dorsal HPC were followed by impairment on this task. In contrast, lesions limited to ventral HPC resulted in enhanced learning. We argue that Fx and HPC lesions do not have interchangeable effects in all learning paradigms. To explain the complex pattern of results presently obtained, we propose a novel hypothesis regarding behavioral functions of HPC neural circuits. Implications regarding the interaction between memory systems are also considered. Hippocampus 2001;11:187,200. © 2001 Wiley-Liss, Inc. [source]


High levels of anxiety and depression have a negative effect on quality of life of women with chronic pelvic pain

INTERNATIONAL JOURNAL OF CLINICAL PRACTICE, Issue 5 2009
A. P. M. S. Romćo
Summary Background:, Chronic pelvic pain (CPP) is a common and complex disease whose cause is often clinically inexplicable, with consequent difficulty in diagnosis and treatment. Patients with CPP have high levels of anxiety and depression, with a consequent impairment of their quality of life. Aims:, The objective of this study was to determine the prevalence of anxiety and depression and their impact on the quality of life of women with CPP. Materials and methods:, A cross-sectional controlled study was conducted on 52 patients with CPP and 54 women without pain. Depression and anxiety were evaluated by the Hospital Anxiety and Depression Scale, and quality of life was evaluated by the World Health Organization Quality of life Whoqol-bref questionnaire. Data were analysed statistically by the Mann-Whitney U -test, the Fisher exact test, chi-square test and Spearman correlation test. Results:, The prevalence of anxiety was 73% and 37% in the CPP and control groups, respectively, and the prevalence of depression was 40% and 30% respectively. Significant differences between groups were observed in the physical, psychological and social domains. Patients with higher anxiety and depression scores present lower quality of life scores. Discussion:, The fact that DPC is a syndromic complex, many patients enter a chronic cycle of search for improvement of medical symptoms. The constant presence of pain may be responsible for affective changes in dynamics, family, social and sexual. Initially the person is facing the loss of a healthy body and active, to a state of dependence and limitations. In this study, patients with higher scores of anxiety and depression scores had lower quality of life and patients with lower scores of anxiety and depression had scores of quality of life. These results show that perhaps the depression and anxiety may be related to the negative impact on quality of life of these patients. Conclusion:, In view of this association, we emphasise the importance of a specific approach to the treatment of anxiety and depression together with clinical treatment to improve the quality of life of these patients. [source]


Adaptive beam search lookahead algorithms for the circular packing problem

INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH, Issue 5 2010
Hakim Akeb
Abstract This paper addresses the circular packing problem (CPP), which consists in packing n circles Ci, each of known radius ri, i,N={1, ,, n}, into the smallest containing circle C. The objective is to determine the radius r of C as well as the coordinates (xi, yi) of the center of Ci, i,N. CPP is solved using two adaptive algorithms that adopt a binary search to determine r, and a beam search to check the feasibility of packing n circles into C when the radius is fixed at r. A node of level ,, ,=1, ,, n, of the beam search tree corresponds to a partial packing of , circles of N into C. The potential of each node of the tree is assessed using a lookahead strategy that, starting with the partial packing of the current node, assigns each unpacked circle to its maximum hole degree position. The beam search stops either when the lookahead strategy identifies a feasible packing or when it has fathomed all nodes. The computational tests on a set of benchmark instances show the effectiveness of the proposed adaptive algorithms. [source]


Characterization of cartilagenous tissue formed on calcium polyphosphate substrates in vitro

JOURNAL OF BIOMEDICAL MATERIALS RESEARCH, Issue 3 2002
Stephen D. Waldman
Abstract Successful joint resurfacing by tissue-engineered cartilage has been limited, in part, by an inability to secure the implant to bone. To overcome this, we have developed the methodology to form a cartilage implant in vitro consisting of a layer of cartilagenous tissue overlying a porous, biodegradable calcium polyphosphate (CPP) substrate. As bone will grow into the CPP after implantation, it will result in anchorage of the cartilage. In this study, the cartilagenous tissue formed in vitro after 8 weeks in culture was characterized and compared to native articular cartilage. Light microscopic examination of histological sections showed that there was a continuous layer of cartilagenous tissue on, and integrated with the subsurface of, the CPP substrate. The in vitro -formed tissue achieved a similar thickness to native articular cartilage (mean ± SEM: in vitro = 0.94 ± 0.03 mm; ex vivo = 1.03 ± 0.01 mm). The cells in the in vitro -formed tissue synthesized large proteoglycans (Kav ± SEM: in vitro = 0.27 ± 0.01; ex vivo = 0.27 ± 0.01) and type II collagen similar to the chondrocytes in the ex-vivo cartilage. The in vitro -formed tissue had a similar amount of proteoglycan (GAG ,g/mg dry wt.: in vitro = 198 ± 10; ex vivo = 201 ± 13) but less collagen than the native cartilage (hydroxyproline ,g/mg dry wt.: in vitro = 21 ± 1; ex vivo = 70 ± 8). The in vitro -formed tissue had only about 3% of the load-bearing capacity and stiffness of the native articular cartilage, determined from unconfined mechanical compression testing. Although low, this was within the range of properties reported by others for tissue-engineered cartilage. It is possible that the limited load-bearing capacity is the result of the low collagen content and further studies are required to identify the conditions that will increase collagen synthesis. © 2002 Wiley Periodicals, Inc. J Biomed Mater Res 62:323,330, 2002 [source]


Endogenous serotonin and serotonin2C receptors are involved in the ability of M100907 to suppress cortical glutamate release induced by NMDA receptor blockade

JOURNAL OF NEUROCHEMISTRY, Issue 2 2009
Eleonora Calcagno
Abstract Blockade of NMDA receptors by intracortical infusion of 3-(R)-2-carboxypiperazin-4-propyl-1-phosphonic acid (CPP) increases glutamate (GLU) and serotonin (5-HT) release in the medial prefrontal cortex and impairs attentional performance in the 5-choice serial reaction time task. These effects are prevented by the 5-HT2A receptor antagonist, (R)-(+)-(2,3-dimethoxyphenyl)-1-[2-(4-fluorophenyl)ethyl]-4-piperidine methanol (M100907). We explored the roles of endogenous 5-HT and 5-HT1A and 5-HT2C receptors in the mechanisms by which M100907 suppresses CPP-induced release of cortical GLU and 5-HT using in vivo microdialysis. CPP raised extracellular GLU and 5-HT by about 250% and 170% respectively. The 5-HT synthesis inhibitor, p -chlorophenylalanine (300 mg/kg), prevented M100907 suppressing CPP-induced GLU release. The effect of M100907 on these rises of GLU and 5-HT and attentional performance deficit was mimicked by the 5-HT2C receptor agonist, (S)-2-(6-chloro-5-fluoroindol-1-yl)-1-methylethylamine fumarate, (Ro60-0175, 30 ,g/kg) while intra-mPFC (SB242084, 6-chloro-5-methyl-1-[[2-[(2-methyl-3-pyridyl)oxy]-5-pyridyl]carbamoyl]-indoline, 0.1 ,M), a 5-HT2C receptor antagonist, prevented the effect of M100907 on extracellular GLU. The 5-HT1A receptor antagonist, N -[2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl]- N -(2-pyridinyl)cyclohexane carboxenide trihydrochloride (100 ,M) abolished the effect of M100907 on the CPP-induced 5-HT release. The data show that blockade of 5-HT2A receptors is not sufficient to suppress the CPP-induced rise of extracellular GLU and 5-HT and suggest that M100907 suppresses GLU release induced by CPP by enhancing the action of endogenous 5-HT on 5-HT2C receptors. [source]


Interaction of S413 -PV cell penetrating peptide with model membranes: relevance to peptide translocation across biological membranes

JOURNAL OF PEPTIDE SCIENCE, Issue 5 2007
Miguel Mano
Abstract Cell penetrating peptides (CPPs) have been successfully used to mediate the intracellular delivery of a wide variety of molecules of pharmacological interest both in vitro and in vivo, although the mechanisms by which the cellular uptake occurs remain unclear and controversial. Following our previous work demonstrating that the cellular uptake of the S413 -PV CPP occurs mainly through an endocytosis-independent mechanism, we performed a detailed biophysical characterization of the interaction of this peptide with model membranes. We demonstrate that the interactions of the S413 -PV peptide with membranes are essentially of electrostatic nature. As a consequence of its interaction with negatively charged model membranes, the S413 -PV peptide becomes buried into the lipid bilayer, which occurs concomitantly with significant peptide conformational changes that are consistent with the formation of a helical structure. Comparative studies using two related peptides demonstrate that the conformational changes and the extent of cell penetration are dependent on the peptide sequence, indicating that the helical structure acquired by the S413 -PV peptide is relevant for its nonendocytic uptake. Overall, our data suggest that the cellular uptake of the S413 -PV CPP is a consequence of its direct translocation through cell membranes, following conformational changes induced by peptide-membrane interactions. Copyright © 2007 European Peptide Society and John Wiley & Sons, Ltd. [source]


Preference Conditioning in Healthy Individuals: Correlates With Hazardous Drinking

ALCOHOLISM, Issue 6 2010
Iris M. Balodis
Background:, Conditioned reward is a classic measure of drug-induced brain changes in animal models of addiction. The process can be examined in humans using the Conditioned Pattern Preference (CPP) task, in which participants associate nonverbal cues with reward but demonstrate low awareness of this conditioning. Previously, we reported that alcohol intoxication does not affect CPP acquisition in humans, but our data indicated that prior drug use may impact conditioning scores. Methods:, To test this possibility, the current study examined the relationship between self-reported alcohol use and preference conditioning in the CPP task. Working memory was assessed during conditioning by asking participants to count the cues that appeared at each location on a computer screen. Participants (69 female and 23 male undergraduate students) completed the Alcohol Use Disorders Identification Test (AUDIT) and the Rutgers Alcohol Problem Index (RAPI) as measures of hazardous drinking. Results:, Self-reported hazardous drinking was significantly correlated with preference conditioning in that individuals who scored higher on these scales exhibited an increased preference for the reward-paired cues. In contrast, hazardous drinking did not affect working memory errors on the CPP task. Conclusions:, These findings support evidence that repeated drug use sensitizes neural pathways mediating conditioned reward and point to a neurocognitive disposition linking substance misuse and responses to reward-paired stimuli. The relationship between hazardous drinking and conditioned reward is independent of changes in cognitive function, such as working memory. [source]


Melatonin enhances the rewarding properties of morphine: involvement of the nitric oxidergic pathway

JOURNAL OF PINEAL RESEARCH, Issue 4 2007
Noushin Yahyavi-Firouz-Abadi
Abstract:, Melatonin has different interactions with opioids including the enhancement of the analgesic effects of morphine and also reversal of tolerance and dependence to morphine. The present study assessed the effect of melatonin on morphine reward in mice using a conditioned place preference (CPP) paradigm. Our data showed that subcutaneous administration of morphine (1,7.5 mg/kg) significantly increased the time spent in the drug-paired compartment in a dose-dependent manner. Intraperitoneal (i.p.) administration of melatonin (1,40 mg/kg) alone did not induce either CPP or conditioned place aversion (CPA), while the combination of melatonin (5,20 mg/kg) and sub-effective dose of morphine (0.5 mg/kg) led to rewarding effect. We further investigated the involvement of the nitric oxidergic pathway in the enhancing effect of melatonin on morphine CPP, by a general nitric oxide synthase inhibitor, NG -nitro- l -arginine methyl ester (l -NAME). l -NAME (1 and 5 mg/kg, i.p.) alone or in combination with morphine (0.5 mg/kg) did not show any significant CPP or CPA. Co-administration of l -NAME (5 mg/kg) with an ineffective combination of melatonin (1 mg/kg) plus morphine (0.5 mg/kg) produced significant CPP that may imply the similarity of action of melatonin and l -NAME and involvement of the nitric oxidergic pathway in this regard. Our results indicate that pretreatment of animals with melatonin enhances the rewarding properties of morphine via a mechanism which may involve the nitric oxidergic pathway. [source]


Suppression of Heavy Drinking and Alcohol Seeking by a Selective ALDH-2 Inhibitor

ALCOHOLISM, Issue 11 2009
Maria P. Arolfo
Background:, Inherited human aldehyde dehydrogenase 2 (ALDH-2) deficiency reduces the risk for alcoholism. Kudzu plants and extracts have been used for 1,000 years in traditional Chinese medicine to treat alcoholism. Kudzu contains daidzin, which inhibits ALDH-2 and suppresses heavy drinking in rodents. Decreased drinking due to ALDH-2 inhibition is attributed to aversive properties of acetaldehyde accumulated during alcohol consumption. However, daidzin can reduce drinking in some rodents without necessarily increasing acetaldehyde. Therefore, a selective ALDH-2 inhibitor might affect other metabolic factors involved in regulating drinking. Methods:, Aldehyde dehydrogenase 2 inhibitors were synthesized based on the co-crystal structure of ALDH-2 and daidzin. We tested the efficacy of a highly selective reversible ALDH-2 inhibitor, CVT-10216, in models of moderate and high alcohol drinking rats. We studied 2-bottle choice and deprivation-induced drinking paradigms in Fawn Hooded (FH) rats, operant self-administration in Long Evans (LE), FH, and inbred P (iP) rats and in cue-induced reinstatement in iP rats. We also assayed blood acetaldehyde levels as well as dopamine (DA) release in the nucleus accumbens (NAc) and tested possible rewarding/aversive effects of the inhibitor in a conditioned place preference (CPP) paradigm. Results:, CVT-10216 increases acetaldehyde after alcohol gavage and inhibits 2-bottle choice alcohol intake in heavy drinking rodents, including deprivation-induced drinking. Moreover, CVT-10216 also prevents operant self-administration and eliminates cue-induced reinstatement of alcohol seeking even when alcohol is not available (i.e., no acetaldehyde). Alcohol stimulates DA release in the NAc, which is thought to contribute to increased drinking and relapse in alcoholism. CVT-10216 prevents alcohol-induced increases in NAc DA without changing basal levels. CVT-10216 does not show rewarding or aversive properties in the CPP paradigm at therapeutic doses. Conclusion:, Our findings suggest that selective reversible ALDH-2 inhibitors may have therapeutic potential to reduce excessive drinking and to suppress relapse in abstinent alcoholics. [source]


GDNF is an Endogenous Negative Regulator of Ethanol-Mediated Reward and of Ethanol Consumption After a Period of Abstinence

ALCOHOLISM, Issue 6 2009
Sebastien Carnicella
Background:, We previously found that activation of the glial cell line-derived neurotrophic factor (GDNF) pathway in the ventral tegmental area (VTA) reduces ethanol-drinking behaviors. In this study, we set out to assess the contribution of endogenous GDNF or its receptor GFR,1 to the regulation of ethanol-related behaviors. Methods:, GDNF and GFR,1 heterozygote mice (HET) and their wild-type littermate controls (WT) were used for the studies. Ethanol-induced hyperlocomotion, sensitization, and conditioned place preference (CPP), as well as ethanol consumption before and after a period of abstinence were evaluated. Blood ethanol concentration (BEC) was also measured. Results:, We observed no differences between the GDNF HET and WT mice in the level of locomotor activity or in sensitization to ethanol-induced hyperlocomotion after systemic injection of a nonhypnotic dose of ethanol and in BEC. However, GDNF and GFR,1 mice exhibited increased place preference to ethanol as compared with their WT littermates. The levels of voluntary ethanol or quinine consumption were similar in the GDNF HET and WT mice, however, a small but significant increase in saccharin intake was observed in the GDNF HET mice. No changes were detected in voluntary ethanol, saccharin or quinine consumption of GFR,1 HET mice as compared with their WT littermates. Interestingly, however, both the GDNF and GFR,1 HET mice consumed much larger quantities of ethanol after a period of abstinence from ethanol as compared with their WT littermates. Furthermore, the increase in ethanol consumption after abstinence was found to be specific for ethanol as similar levels of saccharin intake were measured in the GDNF and GFR,1 HET and WT mice after abstinence. Conclusions:, Our results suggest that endogenous GDNF negatively regulates the rewarding effect of ethanol and ethanol-drinking behaviors after a period of abstinence. [source]


Effects of d -Cycloserine on Extinction and Reconditioning of Ethanol-Seeking Behavior in Mice

ALCOHOLISM, Issue 5 2009
Peter A. Groblewski
Background:,d -Cycloserine (DCS), a partial N -methyl- d -aspartate receptor agonist, has been shown to enhance the extinction of both cocaine and amphetamine-induced conditioned place preference (CPP). However, there have been no reports of the effects of DCS on the extinction of ethanol-conditioned behaviors in mice. Thus, the current experiments examined the effects of DCS on the extinction and subsequent reconditioning of ethanol-induced CPP in mice. Methods:, Male DBA/2J mice received either 2 or 4 pairings of ethanol (2 g/kg) with a conditioned stimulus (CS+) floor cue (and an equal number of saline pairings with a CS, floor cue on alternate days) resulting in either a weak or strong ethanol CPP, respectively. Following conditioning of a strong ethanol CPP mice received saline or 30 mg/kg DCS prior to each of the twelve 30-minute choice extinction trials administered at 48-hour intervals. Mice that had received conditioning of a weak ethanol CPP received saline, 30 or 60 mg/kg DCS immediately before each of the six 30-minute choice extinction trials. Following successful ethanol CPP extinction, mice received reconditioning trials similar to the initial conditioning trials. A final experiment examined the effects 12 DCS pre-exposures (15, 30, and 60 mg/kg) on initial conditioning of ethanol CPP. Results:, First, we showed that 2 doses of DCS (30 and 60 mg/kg) did not have aversive properties that could confound the effects on extinction of CPP (Experiment 1). Second, we showed that DCS (30 and 60 mg/kg) had no effect on the rate of extinction of either strong (Experiment 2) or weak (Experiment 3) ethanol-induced CPP. Interestingly, DCS administered during extinction interfered with reconditioning of ethanol-induced CPP,an effect specific to reconditioning, as DCS pre-exposure did not influence initial ethanol CPP conditioning (Experiment 4). Conclusions:, These experiments show that although DCS showed no effect on extinction behavior, when given during extinction it interfered with subsequent reconditioning of ethanol CPP. The mechanisms of this effect were not, however, due to nonspecific interference with learning because repeated DCS pre-exposures did not impair initial conditioning of ethanol CPP. [source]


Ethanol-Related Behaviors in Serotonin Transporter Knockout Mice

ALCOHOLISM, Issue 12 2006
Janel M. Boyce-Rustay
Background: Increasing evidence supports a role for 5-hydroxytryptamine (5-HT) and the 5-HT transporter (5-HTT) in modulating the neural and behavioral actions of ethanol (EtOH) and other drugs of abuse. Methods: We used a 5-HTT knockout (KO) mouse model to further study this relationship. 5-Hydroxytryptamine transporter KO mice were tested for the sedative/hypnotic, hypothermia-inducing, motor-incoordinating (via accelerating rotarod), and depression-related (via tail suspension test) effects of acute EtOH administration. Reward-related effects of EtOH were assessed in 5-HTT KO mice using the conditioned place preference (CPP) paradigm. 5-Hydroxytryptamine transporter KO mice were tested for voluntary consumption of EtOH in a modified 2-bottle choice test that measured the temporal organization of drinking over the circadian cycle via "lickometers." Results: Replicating previous findings, 5-HTT KO mice exhibited significantly increased sensitivity to EtOH-induced sedation/hypnosis relative to wild-type controls. Additionally, 5-HTT KO mice showed motor-coordination deficits at baseline and in response to EtOH. Hypothermic, pro-depressive,like, and reward-related effects of EtOH were no different across genotypes. Gross EtOH consumption was modestly reduced in 5-HTT KO mice, due to significantly lesser consumption during the peak period of drinking in the early dark phase. Conclusions: Data extend the finding that loss of 5-HTT gene function alters certain neural and behavioral effects of EtOH, with implications for better understanding the pathophysiology and treatment of alcoholism. [source]


Dopamine D2 Receptor Binding, Drd2 Expression and the Number of Dopamine Neurons in the BXD Recombinant Inbred Series: Genetic Relationships to Alcohol and Other Drug Associated Phenotypes

ALCOHOLISM, Issue 1 2003
Robert Hitzemann
Background: It has not been established to what extent the natural variation in dopamine systems contribute to the variation in ethanol response. The current study addresses this issue by measuring D2 dopamine (DA) receptor binding, the expression of Drd2, the number of midbrain DA neurons in the BXD recombinant inbred (RI) series and then compares these strain means with those previously reported for a variety of ethanol and other drug-related phenotypes. Methods: Data were collected for 21 to 23 of the BXD RI strains and the parental strains. D2 DA receptor autoradiography was performed using 125I-epidepride as the ligand [Kanes S, Dains K, Cipp L, Gatley J, Hitzemann B, Rasmussen E, Sanderson S, Silverman S, Hitzemann R (1996) Mapping the genes for haloperidol-induced catalepsy. J Pharmacol Exp Ther 277:1016,1025]. Drd2 expression was measured using the Affymetrix oligoarray system. Immunocytochemical techniques were used to determine the number of midbrain DA neurons [Hitzemann B, Dains K, Hitzemann R (1994) Further studies on the relationship between dopamine cell density and haloperidol response. J Pharmacol Exp Ther 271:969,976]. Results and Conclusions: The range of difference in receptor binding for the RI strains was approximately 2-fold in all regions examined, the core, the shell of the nucleus accumbens (NAc) and the dorsomedial caudate-putamen (CPu); heritability in all regions was moderate,(h 2,0.35). Drd2 expression in forebrain samples from the RI and parental strains ranged 1.5- to 2-fold and h2 was moderate,0.47. Variation in the number of tyrosine hydroxylase (TH) positive neurons was moderate, 41% and 26% and h2 was low,0.19 and 0.15 for the ventral tegmental area (VTA) and substantia nigra compacta (SNc), respectively. Significant correlations were found between D2 DA receptor binding and the low dose (1.33 g/kg) ethanol stimulant response. (p < 0.002) and between Drd2 expression and conditioned place preference (CPP) (p < 0.0005). No significant correlations were detected between ethanol preference and either receptor binding or Drd2 expression; however, a significant correlation was found between preference and Ncam expression. Ncam is approximately 0.2 Mb from Drd2. Overall, the data suggest ethanol preference and CPP are associated with the expression of Drd2 or closely linked genetic loci. [source]