| |||
CNS Regions (cns + regions)
Selected AbstractsDifferential effect of oestradiol and astroglia-conditioned media on the growth of hypothalamic neurons from male and female rat brainsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2000M. J. Cambiasso Abstract To determine whether soluble products from different CNS regions differ in their ability to support oestrogen-stimulated neurite growth, hypothalamic neurons from sexually segregated embryos were cultured with astroglia-conditioned medium (CM) derived from cortex, striatum and mesencephalon, with or without 17-,-oestradiol 100 n m added to the medium. After 48 h in vitro, neurite outgrowth was quantified by morphometric analysis. Astroglia-CM from mesencephalon (a target for the axons of hypothalamic neurons) induced the greatest axogenic response in males and in this case only a neuritogenic effect could be demonstrated for oestradiol. On the other hand, astroglia-CM from regions that do not receive projections from ventromedial hypothalamus inhibited axon growth. A sexual difference in the response of hypothalamic neurons to astroglia-CM and oestradiol was found; growth of neurons from female foetuses was increased by astroglia-CM from mesencephalon, but no neuritogenic effect could be demonstrated for oestradiol in these cultures. Blot immunobinding demonstrated the presence of receptors for neurotrophic factors in cultures of hypothalamic neurons; Western blot analysis of these cultures demonstrated that oestradiol increased the concentration of trkB and IGF-I R,, whereas trkA was not detected and the concentration of trkC was not modified. These results support the hypothesis that target regions produce some factor(s) that stimulate the growth of axons from projecting neurons and further indicate that in the case of males this effect is modulated by oestradiol, perhaps mediated through the upregulation of trkB and IGF-I receptors. [source] Ethanol Impairs Activation of Retinoic Acid Receptors in Cerebellar Granule Cells in a Rodent Model of Fetal Alcohol Spectrum DisordersALCOHOLISM, Issue 5 2010Ambrish Kumar Background:, Ethanol is the main addictive and neurotoxic constituent of alcohol. Ethanol exposure during embryonic development causes dysfunction of the central nervous system (CNS) and leads to fetal alcohol spectrum disorders. The cerebellum is one of the CNS regions that are particularly vulnerable to ethanol toxic effects. Retinoic acid (RA) is a physiologically active metabolite of vitamin A that is locally synthesized in the cerebellum. Studies have shown that RA is required for neuronal development, but it remains unknown if ethanol impairs RA signaling and thus induces neuronal malformations. In this study, we tested the hypothesis that ethanol impairs the expression and activation of RA receptors in cerebellum and in cerebellar granule cells. Methods:, The cerebellum of ethanol unexposed and exposed pups was used to study the expression of retinoic acid receptors (RARs or RXRs) by immunohistochemistry and by Western blot analysis. We also studied the effect of ethanol on expression of RA receptors in the cerebellar granule cells. Activation of RA receptors (DNA-binding activities) in response to high-dose ethanol was determined by electrophoretic mobility shift and supershift assays. Results:, Findings from these studies demonstrated that ethanol exposure reduced the expression of RAR,/, while it increased the expression of RXR,/, in the cerebellum and in cerebellar granule neurons. Immuno-histological studies further strengthened the expression pattern of RA receptors in response to ethanol. The DNA-binding activity of RARs was reduced, while DNA-binding activity of RXRs was increased in response to ethanol exposure. Conclusion:, For the first time, our studies have demonstrated that high-dose ethanol affects the expression and activation of RA receptors, which could impair the signaling events and induce harmful effects on the survival and differentiation of cerebellar granule cells. Taken together, these findings could provide insight into the treatment options for brain defects caused by excessive ethanol exposure, such as in Fetal Alcohol Spectrum Disorders. [source] Isolation and characterization of a novel Xenopus gene (xVAP019) encoding a DUF1208 domain containing proteinMOLECULAR REPRODUCTION & DEVELOPMENT, Issue 12 2007Xu Zhi Ruan Abstract We have identified a novel Xenopus gene (xVAP019) encoding a DUF1208 domain containing protein. Using whole-mount in situ hybridization and RT-PCR, we found abundant xVAP019 maternal transcripts in the animal hemisphere during the cleavage stages and blastula stages. During gastrulation xVAP019 is differentially expressed with higher levels in the animal helf and the highest in marginal zone, then further expressed widely at neuronal stages with strongest signals in the prospective CNS regions and the epidermal ectoderm. Subsequently xVAP019 was expressed predominantly in the head, the eyes, the otic vesicle, branchial arches, spinal cord, notochord, somites, and tailbud. It is absent or very weak in the endoderm. Injecting a morpholino oligo complementary to xVAP019 mRNA or injecting a caped xVAP019 mRNA caused most of embryos to die during gastrulation and neurulation. Overexpression of xVAP019 mRNA also led to eye defect, shorten interocular distance, small body size and abnormal pigment formation in parts of the survival embryos. Similar effects were induced by injecting the xVAP019 human homologous gene FAM92A1. Our results suggest that xVAP019 is essential for the normal ectoderm and axis mesoderm differentiation and embryos survival. This investigation is for the first time in vivo study examining the role of this novel gene and reveals an important role of xVAP019 in embryonic development. Mol. Reprod. Dev. 74: 1505,1513, 2007. © 2007 Wiley-Liss, Inc. [source] Molecular determinants of the face map development in the trigeminal brainstemTHE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 2 2006Reha S. Erzurumlu Abstract The perception of external sensory information by the brain requires highly ordered synaptic connectivity between peripheral sensory neurons and their targets in the central nervous system. Since the discovery of the whisker-related barrel patterns in the mouse cortex, the trigeminal system has become a favorite model for study of how its connectivity and somatotopic maps are established during development. The trigeminal brainstem nuclei are the first CNS regions where whisker-specific neural patterns are set up by the trigeminal afferents that innervate the whiskers. In particular, barrelette patterns in the principal sensory nucleus of the trigeminal nerve provide the template for similar patterns in the face representation areas of the thalamus and subsequently in the primary somatosensory cortex. Here, we describe and review studies of neurotrophins, multiple axon guidance molecules, transcription factors, and glutamate receptors during early development of trigeminal connections between the whiskers and the brainstem that lead to emergence of patterned face maps. Studies from our laboratories and others' showed that developing trigeminal ganglion cells and their axons depend on a variety of molecular signals that cooperatively direct them to proper peripheral and central targets and sculpt their synaptic terminal fields into patterns that replicate the organization of the whiskers on the muzzle. Similar mechanisms may also be used by trigeminothalamic and thalamocortical projections in establishing patterned neural modules upstream from the trigeminal brainstem. © 2006 Wiley-Liss, Inc. [source] |