| |||
CMS Lines (cm + line)
Selected AbstractsAlloplasmic effects on mitochondrial transcriptional activity and RNA turnover result in accumulated transcripts of Arabidopsis orfs in cytoplasmic male-sterile Brassica napusTHE PLANT JOURNAL, Issue 4 2005Matti Leino Summary Mitochondrial transcription was investigated in a cytoplasmic male-sterile (CMS) Brassica napus line with rearranged mitochondrial (mt) DNA mostly inherited from Arabidopsis thaliana. The transcript patterns were compared with the corresponding male-fertile progenitors, B. napus and A. thaliana, and a fertility-restored line. Transcriptional activities, gene stoichiometry and transcript steady-state levels were analysed for all protein and rRNA coding genes and for several orfs present in the A. thaliana mitochondrial genome. The transcriptional activities were highly variable when comparing the parental species, while the CMS and restored lines displayed similar activities. For several ribosomal protein genes transcriptional activity was reduced while it was increased for orf139 in comparison with the parental species. The differences in transcriptional activity observed could be related to differences in relative promoter strength, as gene stoichiometry between lines was very limited. Transcript steady-state levels were more homogenous than the transcriptional activities demonstrating RNA turnover as a compensating mechanism. In the CMS line higher transcript abundance and novel transcript patterns in comparison with the parental lines were found for several genes. Of those, the transcripts for orf139, orf240a and orf294 were less abundant in the fertility-restored line. These putative CMS-associated transcripts were mapped by cRT-PCR. In conclusion we show that (mt) DNA from A. thaliana was non-correctly transcribed and processed/degraded in the B. napus nuclear background. Furthermore, the introgressed nuclear A. thaliana DNA in the fertility-restored line contributes to a more rapid degradation of transcripts accumulated from A. thaliana derived orfs in the CMS line. [source] Development and primary genetic analysis of a fertility temperature-sensitive polima cytoplasmic male sterility restorer in Brassica napusPLANT BREEDING, Issue 3 2007Z. X. Fan Abstract Over the past decade, the polima cytoplasmic male sterility (pol CMS) three-line and two-line systems have been developed for the production of hybrid seed in Brassica napus oilseed rape in China. The discovery of the novel pol CMS restorer line FL-204 is described here. It restores male fertility of hybrid plants in the pol CMS system, but hybrid seed production can only be carried out under autumn sowing in Wuhan in south China under moderate temperatures at flowering. The restorer cannot be used as a male for hybrid seed production in northwestern China (Gansu) under spring sowing conditions, because there it is more or less male sterile due to high temperatures at flowering. Because of this behaviour, it is referred to as a fertility temperature-sensitive restorer (FTSR) in this paper. F2, BC1 as well as double haploid populations were constructed to determine the inheritance of fertility restoration of FL-204 in the autumn at Wuhan and under spring sowing conditions at Gansu, respectively. Deviations from Mendelian genetics were observed. It was hypothesized that the change of fertility was the result of the interaction between nuclear genes [restoring gene (Rf) and temperature-sensitive genes (ts)] and the cytoplasm. The Rf gene in FL-204 was incapable of restoring male fertility of pol CMS lines under spring sowing conditions at Gansu where it is inactivated by the recessive ts gene present in FL-204. However, the ts gene(s) could be non-functional under moderate temperature conditions at flowering at Wuhan which allows full expression of male fertility in FL-204. The recessive ts gene(s) can only be expressed in plants containing the pol sterile cytoplasm. A method for the utilization of the FTSR pol CMS restorer FL-204 for the production of hybrid seed in B. napus oilseed rape is proposed. [source] A unique introgression from Moricandia arvensis confers male fertility upon two different cytoplasmic male-sterile lines of Brassica junceaPLANT BREEDING, Issue 2 2005S. R. Bhat Abstract A Brassica juncea line carrying an introgression from Moricandia arvensis restored male fertility to two cytoplasmic male-sterile (CMS) B. juncea lines carrying either M. arvensis or Diplotaxis catholica cytoplasm. Genetics of fertility restoration was studied in the F1, F2, F3 and backcross generations of the cross between CMS and fertility-restorer lines. No male-sterile plants were found in F1-F3 generations of the cross between CMS [M. arvensis] B. juncea and the restorer. However, a 1: 1 segregation for male sterility and fertility was observed when the F1 was pollinated with non-restorer pollen from a euplasmic line. These results clearly show that restoration is mono-genic and gametophytic. In CMS lines carrying D. catholica cytoplasm, the restorer conferred male fertility to the F1 and showed 3: 1 and 1: 1 segregations for male fertility and sterility in F2 and BC1 generations, respectively, indicating a monogenic, sporophytic mode of fertility restoration. The results were also supported by pollen stainability in the F1 which was about 65% in M. arvensis-based CMS and >90% in D. catholica-based CMS. The above results are discussed in the light of previous molecular studies which showed association between CMS and atpA in both systems. [source] Expression levels of meristem identity and homeotic genes are modified by nuclear,mitochondrial interactions in alloplasmic male-sterile lines of Brassica napusTHE PLANT JOURNAL, Issue 5 2005Rita Teresa Teixeira Summary Homeotic conversions of anthers were found in cytoplasmic male sterile (CMS) plants of Brassica napus derived from somatic hybrids of B. napus and Arabidopsis thaliana. CMS line flowers displayed petals reduced in size and width and stamens replaced by carpelloid structures. In order to investigate when these developmental aberrations appeared, flower development was analysed histologically, ultrastructurally and molecularly. Disorganized cell divisions were detected in the floral meristems of the CMS lines at stage 4. As CMS is associated with mitochondrial aberrations, ultrastructural analysis of the mitochondria in the floral meristems was performed. Two mitochondrial populations were found in the CMS lines. One type had disrupted cristae, while the other resembled mitochondria typical of B. napus. Furthermore, expression patterns of genes expressed in particular floral whorls were determined. In spite of the aberrant development of the third whorl organs, BnAP3 was expressed as in B. napus during the first six stages of development. However, the levels of BnPI were reduced. At later developmental stages, the expression of both BnAP3 and BnPI was strongly reduced. Interestingly the expression levels of genes responsible for AP3 and PI activation such as LFY, UFO and ASK1 were higher in the CMS lines, which indicates that activation of B-genes in the CMS lines does not occur as in B. napus. Disrupted and dysfunctional mitochondria seem to be one of the first aberrations manifested in CMS which result in a retrograde influence of the expression levels of genes responsible for the second and third whorl organ differentiation. [source] Ir A.H. de Voogt: life and career of a radio pioneerASTRONOMISCHE NACHRICHTEN, Issue 5 2007R.G. Strom Abstract There are probably few radio astronomers who would be able to recall A.H. de Voogt, which is unfortunate, but at the same time unsurprising: for he published no original astronomical research, never carried out pioneering observations, nor is his name linked to either theoretical or instrumental breakthroughs. Yet he was described by the man who first observed the 21 cm hydrogen line from the Netherlands as a radio astronomy pioneer, at the very birth of the Dutch effort. He was, moreover, a trail blazer at the cutting edge of radio, not once but twice in his career. Without him it is unlikely that the 21 cm line would have been observed in the Netherlands in 1951, and arguably the H I mapping of the Milky Way under Jan Oort's leadership would have taken place much later, if at all. Radio astronomy observing itself might well have been compromised by interference had it not been for De Voogt's foresight. Anthonet Hugo de Voogt (1892,1969) built, while still a teenager, one of the very first amateur radio stations (call letters VO: · · · ,/, , ,) in Holland, earned the radio-telegrapher's diploma during his student days, and was intimately involved in the foundation of the Dutch Society for Radio-Telegraphy in 1916. Until the 1920s, he was very active in amateur radio and astronomy circles. Trained in electrical engineering at Delft, he joined the PTT (Post Office) as a telegraph engineer in 1919, worked his way through the ranks to become head of the telephone district of Breda in 1939, and was promoted to head the PTT Radio Service just days after the end of the war. As his department was responsible for overseas radio communication, he initiated a research effort to study radio propagation in the ionosphere and the effects of solar activity. To this end, he rescued a number of Würzburg-Riese 7.5-m radar antennas abandoned at the end of the war, made one available for Jan Oort's H I work, and launched a series of radio astronomical initiatives. His group also built a number of antennas, monitored solar emission, and participated in the International Geophysical Year (1957,1958). (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] |