Cm Depth (cm + depth)

Distribution by Scientific Domains

Selected Abstracts

Soil production in heath and forest, Blue Mountains, Australia: influence of lithology and palaeoclimate

Marshall T. Wilkinson
Abstract An Erratum has been published for this article in Earth Surfaces Processes and Landforms 25(13) 2005, 1683,1686. Recent determinations of soil production from in situ cosmogenic nuclides indicate that production decreases exponentially with soil depth. This contrasts with a long-held assumption that maximum soil production occurs under a soil cover of finite depth. Sites in the Blue Mountains, Australia, show a sharp decrease of soil depth where vegetation changes from forested plateau surfaces to heath-covered spurs, and bands of bare rock in the heath suggest that soil production depends on presence of a finite depth of soil. The substrate varies from hard ferruginized sandstone to soft saprolite. In situ 10Be determinations indicate that apparent rates of erosion and soil production are greater under the relatively thin heath soil than under the thicker forest soil but, in contrast to other studies, these sites do not show significant depth-dependence of apparent soil production. The pattern reflects both hardness variation in the rock substrate and the effect of Late Quaternary climatic change. Optically stimulated luminescence (OSL) dating indicates that soil ,30 cm depth is of Holocene age whereas the deeper soil is substantially older. The age-break coincides with a stone line interpreted as a former surface lag deposit. Assuming that pre-Holocene soil depths were 30 cm less than today, recalculated soil production tends to decrease with increasing depth. Soil production at this site requires soil cover but bare rock patches and vegetation comprise a shifting mosaic. In the long term, average rates of erosion and soil production decrease with increasing soil depth. Copyright © 2005 John Wiley & Sons, Ltd. [source]

Earth hummocks (thúfur): new insights to their thermal characteristics and development in eastern Lesotho, southern Africa

Stefan W. Grab
Abstract The aspect-controlled variations in soil freezing within earth hummocks of eastern Lesotho (southern Africa) are analysed. Ground thermal data were measured for an earth hummock from late autumn to early spring in 1995 and 1996, using TinytalkÔ data loggers. During 1995, ground temperatures were recorded at 15 and 20 cm depth on the hummock north, east, south and west aspects, whilst in 1996 temperatures were recorded at 1 cm, 5 cm and 10 cm on the north and south aspects. The data from 1995 indicate that soil freezing commences on the hummock southern aspects and gradually progresses towards the western and northern aspects, whilst the eastern aspect remained unfrozen throughout winter. The data from 1996 indicate that a thick snow cover almost nullifies the temperature differences between the hummock northern and southern aspects. However, given the relative absence of snow during contemporary winters, freeze intensity and duration is longest on the hummock southern and western aspects, which helps explain earth hummock deformation (elongation and coalescence) in a southwesterly direction on slope gradients ,3°. Copyright © 2005 John Wiley & Sons, Ltd. [source]

Temporal and spatial variations in periglacial soil movements on alpine crest slopes

Norikazu Matsuoka
Abstract This paper describes up to ten years of continuous monitoring of frost heave, creep and associated parameters on high mountain crest slopes in the Japanese and Swiss Alps, aiming to evaluate spatial and interannual variations in the rates and controls of soil movement. Shallow frost creep re,ecting diurnal frost heave activity dominates the crest slopes that lack a vegetation mat and have a thin debris mantle with good drainage. Seasonal frost heave activity can induce slightly deeper movement where ,ne soil exists below the depth reached by diurnal freeze,thaw penetration, although the shallow bedrock impedes movements below 20 cm depth. As a result, downslope velocity pro,les display strong concavity with surface velocities of 2,50 cm a,1. The frost creep rates vary spatially, depending on the soil texture, slope gradient, frequency of temperature cycling across 0 °C and moisture availability during freeze,thaw periods. Soil movements recur in every freeze,thaw period, although with some interannual variations affected by the length of seasonal snow cover and the occurrence of precipitation during freeze,thaw periods. The Swiss Alps encounter more signi,cant interannual variations than the Japanese Alps, re,ecting the large variability of the annual snow regime. Copyright © 2005 John Wiley & Sons, Ltd. [source]

The influence of groundwater on surface flow erosion processes during a rainstorm

D. L. RockwellArticle first published online: 27 MAY 200
Abstract Surface erosion rates on a disturbed natural soil in a 10 m indoor flume increased by an order of magnitude when a water table developed at a 10 cm depth during simulated rainstorms. Erosion rate increases did not correlate well with surface hydraulic flow conditions, and all significant erosion increases began before the full soil depth was saturated, before the water table reached the soil surface, and before seepage was possible. Groundwater influenced erosion processes primarily by increasing unsaturated pore-water pressures and decreasing soil shear strength in surface rainflow, rather than through the direct entrainment of soil particles by seepage flow. There was no unique morphologic expression of the influence of groundwater during a rainstorm. Subsurface processes influencing surface erosion were detected only by appropriate subsurface instrumentation, which included micropiezometers, tensiometers and time domain reflectometry. Erosion rate increases occurred all along the slope, and were not concentrated at the base of slope due to a seepage zone. Soil depth was crucial to determining surface erosion increase. It is likely that confusing trends in surface flow erosion rates in past studies have occurred due to unrecorded groundwater development or an emphasis on seepage effects. Groundwater must be monitored along hillslopes under all moisture and soil conditions in order to avoid misleading and inconsistent conclusions derived solely from surface flow or seepage data. Copyright © 2002 John Wiley & Sons, Ltd. [source]

Species-specific responses to atmospheric carbon dioxide and tropospheric ozone mediate changes in soil carbon

ECOLOGY LETTERS, Issue 11 2009
Alan F. Talhelm
Abstract We repeatedly sampled the surface mineral soil (0,20 cm depth) in three northern temperate forest communities over an 11-year experimental fumigation to understand the effects of elevated carbon dioxide (CO2) and/or elevated phyto-toxic ozone (O3) on soil carbon (C). After 11 years, there was no significant main effect of CO2 or O3 on soil C. However, within the community containing only aspen (Populus tremuloides Michx.), elevated CO2 caused a significant decrease in soil C content. Together with the observations of increased litter inputs, this result strongly suggests accelerated decomposition under elevated CO2. In addition, an initial reduction in the formation of new (fumigation-derived) soil C by O3 under elevated CO2 proved to be only a temporary effect, mirroring trends in fine root biomass. Our results contradict predictions of increased soil C under elevated CO2 and decreased soil C under elevated O3 and should be considered in models simulating the effects of Earth's altered atmosphere. [source]

In situ measurement of methane fluxes and analysis of transcribed particulate methane monooxygenase in desert soils

Roey Angel
Summary Aerated soils are a biological sink for atmospheric methane. However, the activity of desert soils and the presence of methanotrophs in these soils have hardly been studied. We studied on-site atmospheric methane consumption rates as well as the diversity and expression of the pmoA gene, coding for a subunit of the particulate methane monooxygenase, in arid and hyperarid soils in the Negev Desert, Israel. Methane uptake was only detected in undisturbed soils in the arid region (,90 mm year,1) and vertical methane profiles in soil showed the active layer to be at 0,20 cm depth. No methane uptake was detected in the hyperarid soils (,20 mm year,1) as well as in disturbed soils in the arid region (i.e. agricultural field and a mini-catchment). Molecular analysis of the methanotrophic community using terminal restriction fragment length polymorphism (T-RFLP) and cloning/sequencing of the pmoA gene detected methanotrophs in the active soils, whereas the inactive ones were dominated by sequences of the homologous gene amoA, coding for a subunit of the ammonia monooxygenase. Even in the active soils, methanotrophs (as well as in situ activity) could not be detected in the soil crust, which is the biologically most important layer in desert soils. All pmoA sequences belonged to yet uncultured strains. Transcript analysis showed dominance of sequences clustering within the JR3, formerly identified in Californian grassland soils. Our results show that although active methanotrophs are prevalent in arid soils they seem to be absent or inactive in hyperarid and disturbed arid soils. Furthermore, we postulate that methanotrophs of the yet uncultured JR3 cluster are the dominant atmospheric methane oxidizers in this ecosystem. [source]

Dissipation kinetics and mobility of chlortetracycline, tylosin, and monensin in an agricultural soil in Northumberland County, Ontario, Canada

Jules C. Carlson
Abstract A robust high-throughput method was refined to extract three growth-promoting antibiotics, tylosin (TYL), chlortetracycline (CTC), and monensin (MON), from soil. Analysis was performed by electrospray liquid chromatography tandem mass spectrometry. Soil dissipation rate studies were performed in a farm field soil for antibiotics applied with and without manure. Tylosin, CTC, and MON followed first-order dissipation kinetics with half-lives of 4.5, 24, and 3.3 d, respectively, with the addition of manure and 6.1, 21, and 3.8 d, respectively, without manure. Manure application significantly increased TYL dissipation rate, perhaps because of the introduced microbial flora, but had no significant effect on CTC or MON. Monensin dissipation half-life was found to be much shorter in the field study than in a controlled laboratory study, perhaps because of differences in microbial communities. The antimicrobials were not highly mobile. Chlortetracycline was the only antibiotic detected at 25 to 35 cm depth and only up to 2% of the initial concentration in a sandy loam soil. These antibiotics are therefore expected to degrade primarily in agricultural soils before moving to greater depths or to groundwater in significant concentrations in most agricultural systems. [source]

Distribution of polycyclic aromatic hydrocarbons in particle-size separates and density fractions of typical agricultural soils in the Yangtze River Delta, east China

J. Z. Ni
Summary Soil organic matter can be divided into different organic carbon (C) pools with different turnover rates. The organic pollutants in soils associated with these organic C pools may have different bioavailability and environmental risks during the decomposition of soil organic matter. We studied the distribution patterns of 15 USEPA priority polycyclic aromatic hydrocarbons (PAHs) in different particle-size separates (clay, fine silt, coarse silt, fine sand and coarse sand) and density fractions (light and heavy fractions) of nine agricultural topsoils (0,20 cm depth) from a contaminated area in the Yangtze River Delta region of east China. There was a decreasing trend in PAH concentration in particle-size separates with decreasing particle size. However, the different particle-size separates had similar PAH composition. The concentration of PAHs in the light fraction ranged from 13 037 to 107 299 ,g kg,1, far higher than in the heavy fraction, which ranged from 222 to 298 ,g kg,1. Although the light fraction accounted for only 0.4,2.3% of the soils, it was associated with 31.5,69.5% of soil PAHs. The organic matter in coarse silt had the strongest capacity for enrichment with PAHs. Combining the distributions of PAHs and the turnover rates of organic matter in different soil fractions, the environmental risks of PAH-polluted soils may be due mainly to the PAHs associated with sand and the light fraction. [source]

Fate of airborne metal pollution in soils as related to agricultural management.


Summary The fate of airborne metal pollutants in soils is still relatively unknown. We studied the incorporation of such airborne metal pollution in two soils under long-term permanent pasture (PP) and conventional arable land (CA). Both soils were located at an almost equal distance from a former zinc smelter complex and developed under comparable pedogenetic conditions. Profiles of total concentrations of Zn, chosen as a mobile, and Pb as a little- or non-mobile element, were examined and compared with macro- and micromorphological soil characteristics (soil colour, biological activity). The two soils showed different profiles of total Zn and Pb concentrations, with a marked decrease of concentrations of both elements under the plough layer in CA, whereas the decrease was more progressive in PP. However, the stocks of Zn and Pb for the 1-m soil profiles of CA and PP were comparable. Correlation of Zn and Pb concentration at different depths with total Fe contents and comparison with estimated data for the local geochemical background (LGCB), suggests transport of Zn from the surface to depth in CA and PP, and Pb movement in PP. In CA, 53% of Zn and 92.5% of Pb stocks derived from airborne metal pollution were located at depths < 26 cm. In PP, only 40% of Zn and 82% of Pb, derived from airborne pollution, were found in the A11 and A12 horizons (< 26 cm), the remaining 18% of the Pb stock being incorporated until 50 cm depth; one-third of total Zn stock ascribed to airborne pollution was found at depths > 50 cm. Studies of the composition of gravitational water collected in soils from the same study area suggest two mechanisms for metal movement. First, mobile metal ions (Zn2+) move in the soil solution and are intercepted by iron-clay complexes in deeper soil horizons. Second, observed only in PP, simultaneous movement of Zn and Pb is ascribed to bioturbation by earthworms. [source]

Lime and cow slurry application temporarily increases organic phosphorus mobility in an acid soil

P. N. C. MurphyArticle first published online: 13 OCT 200
Summary Phosphorus loss from agricultural soils to water is recognized as a major contributor to eutrophication of surface water bodies. There is much evidence to suggest that liming, a common agricultural practice, may decrease the risk of P loss by decreasing P solubility. An unsaturated leaching column experiment, with treatments of control and two lime rates, was carried out to investigate the effects of liming on P mobility in a low-P acid Irish soil, which was sieved and then packed in columns. Phosphorus was applied at the soil surface in the form of KH2PO4 in solution or as cow slurry. Soil solution was sampled at time intervals over depth and analysed for P fractions. Organic P (OP) was the dominant form of P mobile in soil solution. Liming increased OP mobility, probably through increased dispersion of OP with increased pH. Slurry application also increased OP mobility. Results indicated the potential for OP loss following heavy (100 m,3 ha,1) cow slurry application, even from low-P soils, and suggested that liming may increase this risk. Reactive P (RP) was sorbed strongly and rapidly by the soil and did not move substantially below 5 cm depth. As a result, Olsen-P values in the top 2 cm were greatly increased, which indicates an increased risk of RP loss in overland flow. Lime showed little potential as a soil amendment to reduce the risk of P loss. [source]

Occurrence, prediction and hydrological effects of water repellency amongst major soil and land-use types in a humid temperate climate

S. H. Doerr
Summary Knowledge of soil water repellency distribution, of factors affecting its occurrence and of its hydrological effects stems primarily from regions with a distinct dry season, whereas comparatively little is known about its occurrence in humid temperate regions such as typified by the UK. To address this research gap, we have examined: (i) water repellency persistence (determined by the water drop penetration time method, WDPT) and degree (determined by the critical surface tension method, CST) for soil samples (0,5, 10,15 and 20,25 cm depth) taken from 41 common soil and land-use types in the humid temperate climate of the UK; (ii) the supposed relationship of soil moisture, textural composition and organic matter content with sample repellency; and (iii) the bulk wetting behaviour of undisturbed surface core samples (0,5 cm depth) over a period of up to 1 week. Repellency was found in surface samples of all major soil textural types amongst most permanently vegetated sites, whereas tilled sites were virtually unaffected. Repellency levels reached those of the most severely affected areas elsewhere in the world, decreased in persistence and degree with depth and showed no consistent relationship with soil textural characteristics, organic matter or soil moisture contents, except that above a water content of c. 28% by volume, repellency was absent. Wetting rate assessments of 100 cm3 intact soil cores using continuous water contact (,20 mm pressure head) over a period of up to 7 days showed that across the whole sample range and irrespective of texture, severe to extreme repellency persistence consistently reduced the maximum water content at any given time to well below that of wettable soils. For slightly to moderately repellent soils the results were more variable and thus hydrological effects of such repellency levels are more difficult to predict. The results imply that: (i) repellency is common for many land-use types with permanent vegetation cover in humid temperate climates irrespective of soil texture; (ii) supposedly influential parameters (texture, organic matter, specific water content) are poor general predictors of water repellency, whereas land use and the moisture content below which repellency can occur seem more reliable; and (iii) infiltration and water storage capacity of very repellent soils are considerably less than for comparable wettable soils. [source]

Single- and dual-porosity modelling of multiple tracer transport through soil columns: effects of initial moisture and mode of application

T. Kätterer
Summary We investigated the effect of initial moisture contents and mode of application on the displacement of multiple conservative tracers through undisturbed columns of a Humic Gleysol. Bromide was applied at the soil surface and chloride was injected at 5 cm depth. The columns were irrigated with deuterium-enriched water. A dual-porosity model and two single-porosity models were calibrated separately to Br, and Cl, elution curves in the two columns. Elution curves were almost identical for Br, and Cl, under initially wet conditions, whereas the displacement of Br, was faster than that of Cl, in the initially dry column, indicating rapid transport with preferential flow. Only the dual-porosity model described the long-tailing breakthrough of Cl, in the initially dry column adequately. The parameter values giving acceptable fits for ,Br dry' were not compatible with the description of the three other elution curves, which could be adequately modelled with a single set of parameter values. The estimated set of common parameters was validated by comparing with the elution curves of deuterium water, nitrate and sulphate, as well as with resident tracer concentrations at four depths. The results showed that solutes can be displaced much faster when applied at the surface of initially dry soil than when applied to wet soil or when resident in the soil matrix. The simulation results suggest that solute transport under initially dry conditions was governed by preferential flow of infiltration water through macropores by-passing the matrix due to shrinkage cracks and water repellence of matrix surfaces. [source]

Root recovery rates for Phytophthora cinnamomi and rate of symptom development from root rot on Abies fraseri trees over 7 years

G. J. Griffin
Summary Phytophthora root rot on Abies fraseri trees was monitored from 2001 to 2007 within the disease front of a 12-year-old Virginia plantation where trees had been dying of the disease since 1994. After a slow increase in early foliage symptom development from July 2001 to September 2002, the frequency of A. fraseri trees with early symptoms accelerated for about 15 months. While the slow increase occurred during a 18.7% lower than normal rainfall period and the acceleration occurred during a 31.2% higher than normal rainfall period, the percentage of trees with early symptoms continued to increase during the mid-winter months (December,February) when the estimated mean minimum daily soil temperature (25 cm depth) was unfavourable (<10°C) to Phytophthora cinnamomi pathogenic activity. The time required for trees to progress from early foliage symptoms to completely dead foliage, from November 2000 to October 2007, was highly variable, ranging from 4 to 35 months. Root recovery rates for P. cinnamomi, assayed on a selective medium, were 6.4 times greater for symptomatic foliage trees than for asymptomatic foliage trees in this deep, silt-loam soil. Following an atypical cold period in February 2007, when the mean minimum daily soil temperature was 0.8°C, symptomatic roots yielded only a low level of germinable propagules of P. cinnamomi. Further, during an atypical midsummer in 2007 (June,August), when the soil water potential was at or below ,9 bars for 68 of 92 days, symptomatic roots yielded no germinable propagules of P. cinnamomi. Addition of thiophanate-methyl to the selective medium aided P. cinnamomi isolation by inhibiting many undesired pythiaceous colonies growing from symptomatic roots. [source]

Biogeochemistry of a gypsum-encrusted microbial ecosystem

GEOBIOLOGY, Issue 3 2004
ABSTRACT Gypsum crusts containing multicolored stratified microbial populations grow in the evaporation ponds of a commercial saltern in Eilat, Israel. These crusts contain two prominent cyanobacterial layers, a bright purple layer of anoxygenic phototrophs, and a lower black layer with active sulphate reduction. We explored the diel dynamics of oxygen and sulphide within the crust using specially constructed microelectrodes, and further explored the crust biogeochemistry by measuring rates of sulphate reduction, stable sulphur isotope composition, and oxygen exchange rates across the crust,brine interface. We explored crusts from ponds with two different salinities, and found that the crust in the highest salinity was the less active. Overall, these crusts exhibited much lower rates of oxygen production than typical organic-rich microbial mats. However, this was mainly due to much lower cell densities within the crusts. Surprisingly, on a per cell-volume basis, rates of photosynthesis were similar to organic-rich microbial mats. Due to relatively low rates of oxygen production and deep photic zones extending from 1.5 to 3 cm depth, a large percentage of the oxygen produced during the day accumulated into the crusts. Indeed, only between 16% to 34% of the O2 produced in the crust escaped, and the remainder was internally recycled, used mainly in O2 respiration. We view these crusts as potential homologs to ancient salt-encrusted microbial ecosystems, and we compared them to the 3.45 billion-year-old quartz barite deposits from North Pole, Australia, which originally precipitated gypsum. [source]

Ground Thermal Profiles from Mount Kenya, East Africa

Stefan W. Grab
Abstract This paper presents and compares ground thermal regimes at 4200 and 4800 m a.s.l. on Mount Kenya's southern aspect. Temperatures were recorded using TinytalkÔ data loggers, installed at the ground surface and at depths of 1 cm, 5 cm, 10 cm and 50 cm. Temperatures were logged at 2-hour intervals over a period of 12 months (August 1998 to July 1999). The study is designed to demonstrate near-surface freeze conditions, which would have implications for contemporary periglacial landform production. Although ground freeze at 4200 m a.s.l. occurs during most nights (c. 70% at 1 cm depth), freeze penetration is restricted to the top 2 to 3 cm, such that no freeze was recorded at 5 cm depth. At 4800 m a.s.l., the diurnal frost frequency at the surface is 365 days (100%), whilst that at 10 cm depth is 165 days (45%). The paper demonstrates that a greater longevity of contemporary thin snow cover at 4800 m a.s.l. permits progressive sub-surface cooling with depth. However, the near-surface ground temperature profiles suggest that conditions are not conducive to permafrost development at the sites. [source]

Changes in topsoil carbon stock in the Tibetan grasslands between the 1980s and 2004

Abstract Climate warming is likely inducing carbon loss from soils of northern ecosystems, but little evidence comes from large-scale observations. Here we used data from a repeated soil survey and remote sensing vegetation index to explore changes in soil organic carbon (SOC) stock on the Tibetan Plateau during the past two decades. Our results showed that SOC stock in the top 30 cm depth in alpine grasslands on the plateau amounted to 4.4 Pg C (1 Pg=1015 g), with an overall average of 3.9 kg C m,2. SOC changes during 1980s,2004 were estimated at ,0.6 g C m,2 yr,1, ranging from ,36.5 to 35.8 g C m,2 yr,1 at 95% confidence, indicating that SOC stock in the Tibetan alpine grasslands remained relatively stable over the sampling periods. Our findings are nonconsistent with previous reports of loss of soil C in grassland ecosystems due to the accelerated decomposition with warming. In the case of the alpine grasslands on the Tibetan Plateau studied here, we speculate that increased rates of decomposition as soils warmed during the last two decades may have been compensated by increased soil C inputs due to increased grass productivity. These results suggest that soil C stock in terrestrial ecosystems may respond differently to climate change depending on ecosystem type, regional climate pattern, and intensity of human disturbance. [source]

Soil organic carbon contents in long-term experimental grassland plots in the UK (Palace Leas and Park Grass) have not changed consistently in recent decades

Abstract A recent report of widespread declines in soil organic C (SOC) in the UK over the 10,25 years until the early 2000s has focussed attention on the importance of resampling previously characterized sites to assess long-term trends in SOC contents and the importance of soils as a potentially volatile and globally significant reservoir of terrestrial C. We have used two sets of long-term experimental plots which have been under constant and known management for over a century and for which historical data exist that allow comparison over recent decades to determine what, if any, changes in SOC content have occurred. The plots used are the Palace Leas (PL) Meadow Hay Plots in north-east England (UK) established in 1897, and from the Park Grass (PG) Continuous Hay experiment established in 1856 at Rothamsted in south-east England. Collectively, these plots represent the only grassland sites in the UK under long-term management where changes in SOC over several decades can be assessed, and are probably unique in the world. The plots have received different manure and fertilizer treatment and have been under known management for at least 100 years. In 1982, total SOC contents were determined for the 0,27 cm layer of six of the PL plots using measurements of SOC concentrations, bulk density and soil depth. In 2006, the same six PL plots were resampled and SOC contents determined again. Four of the plots showed no net change in SOC content, but two plots showed net loss of SOC of 15% and 17% (amounting to decreases of 18 and 15 t C ha,1) since 1982. However, these differences in total SOC content were in a similar range to the variations in bulk density (6,31%) with changing soil water content. In 1959, the soil masses and SOC concentrations to 23 cm depth were measured on six PG plots with fertilizer and manure treatments corresponding closely with those measured on PL. In 2002, the SOC concentrations on the same plots were measured again. On three of the PG plots, SOC concentrations had declined by 2,10%, but in the other three it had increased by 4,8% between 1959 and 2002. If it is assumed that the soil bulk density had not changed over this period, the losses of SOC from the top soils ranged range from 10 to 3 t C ha,1, while the gains ranged from 4 to 7 t C ha,1. When the differences with time in SOC contents for the six PL and the six PG plots were examined using paired t -tests, that is, regarding the plots as two sets of six replicate permanent grasslands, there were no significant differences between 1982 and 2006 for the PL plots or between 1959 and 2002 for the PG plots. Thus, these independent observations on similar plots at PL and PG indicate there has been no consistent decrease in SOC stocks in surface soils under old, permanent grassland in England in recent decades, even though meteorological records for both sites indicate significant warming of the soil and air between 1980 and 2000. Because the potential influences of changes in management or land use have been definitively excluded, and measured rather than derived bulk densities have been used to convert from SOC concentrations to SOC amounts, our observations question whether for permanent grassland in England, losses in SOC in recent decades reported elsewhere can be attributed to widespread environmental change. [source]

Effects of soil frost on soil respiration and its radiocarbon signature in a Norway spruce forest soil

Abstract Apart from a general increase of mean annual air temperature, climate models predict a regional increase of the frequency and intensity of soil frost with possibly strong effects on C cycling of soils. In this study, we induced mild soil frost (up to ,5 °C in a depth of 5 cm below surface) in a Norway spruce forest soil by removing the natural snow cover in the winter of 2005/2006. Soil frost lasted from January to April 2006 and was detected down to 15 cm depth. Soil frost effectively reduced soil respiration in the snow removal plots in comparison to undisturbed control plots. On an annual basis 6.2 t C ha,1 a,1 were emitted in the control plots compared with 5.1 t C ha,1 a,1 in the snow removal plots. Only 14% of this difference was attributed to reduced soil respiration during the soil frost period itself, whereas 63% of this difference originated from differences during the summer of 2006. Radiocarbon (,14C) signature of CO2 revealed a considerable reduction of heterotrophic respiration on the snow removal plots, only partly compensated for by a slight increase of rhizosphere respiration. Similar CO2 concentrations in the uppermost mineral horizons of both treatments indicate that differences between the treatments originated from the organic horizons. Extremely low water contents between June and October of 2006 may have inhibited the recovery of the heterotrophic organisms from the frost period, thereby enhancing the differences between the control and snow removal plots. We conclude that soil frost triggered a change in the composition of the microbial community, leading to an increased sensitivity of heterotrophic respiration to summer drought. A CO2 pulse during thawing, such as described for arable soils several times throughout the literature, with the potential to partly compensate for reduced soil respiration during soil frost, appears to be lacking for this soil. Our results from this experiment indicate that soil frost reduces C emission from forest soils, whereas mild winters may enhance C losses from forest soils. [source]

Increased temperature sensitivity of net DOC production from ombrotrophic peat due to water table draw-down

Abstract The production and release of dissolved organic carbon (DOC) from peat soils is thought to be sensitive to changes in climate, specifically changes in temperature and rainfall. However, little is known about the actual rates of net DOC production in response to temperature and water table draw-down, particularly in comparison to carbon dioxide (CO2) fluxes. To explore these relationships, we carried out a laboratory experiment on intact peat soil cores under controlled temperature and water table conditions to determine the impact and interaction of each of these climatic factors on net DOC production. We found a significant interaction (P < 0.001) between temperature, water table draw-down and net DOC production across the whole soil core (0 to ,55 cm depth). This corresponded to an increase in the Q10 (i.e. rise in the rate of net DOC production over a 10 °C range) from 1.84 under high water tables and anaerobic conditions to 3.53 under water table draw-down and aerobic conditions between ,10 and , 40 cm depth. However, increases in net DOC production were only seen after water tables recovered to the surface as secondary changes in soil water chemistry driven by sulphur redox reactions decreased DOC solubility, and therefore DOC concentrations, during periods of water table draw-down. Furthermore, net microbial consumption of DOC was also apparent at , 1 cm depth and was an additional cause of declining DOC concentrations during dry periods. Therefore, although increased temperature and decreased rainfall could have a significant effect on net DOC release from peatlands, these climatic effects could be masked by other factors controlling the biological consumption of DOC in addition to soil water chemistry and DOC solubility. These findings highlight both the sensitivity of DOC release from ombrotrophic peat to episodic changes in water table draw-down, and the need to disentangle complex and interacting controls on DOC dynamics to fully understand the impact of environmental change on this system. [source]

Plant diversity positively affects short-term soil carbon storage in experimental grasslands

Abstract Increasing atmospheric CO2 concentration and related climate change have stimulated much interest in the potential of soils to sequester carbon. In ,The Jena Experiment', a managed grassland experiment on a former agricultural field, we investigated the link between plant diversity and soil carbon storage. The biodiversity gradient ranged from one to 60 species belonging to four functional groups. Stratified soil samples were taken to 30 cm depth from 86 plots in 2002, 2004 and 2006, and organic carbon contents were determined. Soil organic carbon stocks in 0,30 cm decreased from 7.3 kg C m,2 in 2002 to 6.9 kg C m,2 in 2004, but had recovered to 7.8 kg C m,2 by 2006. During the first 2 years, carbon storage was limited to the top 5 cm of soil while below 10 cm depth, carbon was lost probably as short-term effect of the land use change. After 4 years, carbon stocks significantly increased within the top 20 cm. More importantly, carbon storage significantly increased with sown species richness (log-transformed) in all depth segments and even carbon losses were significantly smaller with higher species richness. Although increasing species diversity increased root biomass production, statistical analyses revealed that species diversity per se was more important than biomass production for changes in soil carbon. Below 20 cm depth, the presence of one functional group, tall herbs, significantly reduced carbon losses in the beginning of the experiment. Our analysis indicates that plant species richness and certain plant functional traits accelerate the build-up of new carbon pools within 4 years. Additionally, higher plant diversity mitigated soil carbon losses in deeper horizons. This suggests that higher biodiversity might lead to higher soil carbon sequestration in the long-term and therefore the conservation of biodiversity might play a role in greenhouse gas mitigation. [source]

Response of soil surface CO2 flux in a boreal forest to ecosystem warming

Abstract Soil surface carbon dioxide (CO2) flux (RS) was measured for 2 years at the Boreal Soil and Air Warming Experiment site near Thompson, MB, Canada. The experimental design was a complete random block design that consisted of four replicate blocks, with each block containing a 15 m × 15 m control and heated plot. Black spruce [Picea mariana (Mill.) BSP] was the overstory species and Epilobium angustifolium was the dominant understory. Soil temperature was maintained (,5 °C) above the control soil temperature using electric cables inside water filled polyethylene tubing for each heated plot. Air inside a 7.3-m-diameter chamber, centered in the soil warming plot, contained approximately nine black spruce trees was heated ,5 °C above control ambient air temperature allowing for the testing of soil-only warming and soil+air warming. Soil surface CO2 flux (RS) was positively correlated (P < 0.0001) to soil temperature at 10 cm depth. Soil surface CO2 flux (RS) was 24% greater in the soil-only warming than the control in 2004, but was only 11% greater in 2005, while RS in the soil+air warming treatments was 31% less than the control in 2004 and 23% less in 2005. Live fine root mass (< 2 mm diameter) was less in the heated than control treatments in 2004 and statistically less (P < 0.01) in 2005. Similar root mass between the two heated treatments suggests that different heating methods (soil-only vs. soil+air warming) can affect the rate of decomposition. [source]

Fifteen years of climate change manipulations alter soil microbial communities in a subarctic heath ecosystem

Abstract Soil microbial biomass in arctic heaths has been shown to be largely unaffected by treatments simulating climate change with temperature, nutrient and light manipulations. Here, we demonstrate that more than 10 years is needed for development of significant responses, and that changes in microbial biomass are accompanied with strong alterations in microbial community composition. In contrast to slight or nonsignificant responses after 5, 6 and 10 treatment years, 15 years of inorganic NPK fertilizer addition to a subarctic heath had strong effects on the microbial community and, as observed for the first time, warming and shading also led to significant responses, often in opposite direction to the fertilization responses. The effects were clearer in the top 5 cm soil than at the 5,10 cm depth. Fertilization increased microbial biomass C and more than doubled microbial biomass P compared to the non-fertilized plots. However, it only increased microbial biomass N at the 5,10 cm depth. Fertilization increased fungal biomass and the relative abundance of phospholipid fatty acid (PLFA) markers of gram-positive bacteria. Warming and shading decreased the relative abundance of fungal PLFAs, and shading also altered the composition of the bacterial community. The long time lag in responses may be associated with indirect effects of the gradual changes in the plant biomass and community composition. The contrasting responses to warming and fertilization treatments show that results from fertilizer addition may not be similar to the effects of increased nutrient mineralization and availability following climatic warming. [source]

Effects of wildfire and permafrost on soil organic matter and soil climate in interior Alaska

Abstract The influence of discontinuous permafrost on ground-fuel storage, combustion losses, and postfire soil climates was examined after a wildfire near Delta Junction, AK in July 1999. At this site, we sampled soils from a four-way site comparison of burning (burned and unburned) and permafrost (permafrost and nonpermafrost). Soil organic layers (which comprise ground-fuel storage) were thicker in permafrost than nonpermafrost soils both in burned and unburned sites. While we expected fire severity to be greater in the drier site (without permafrost), combustion losses were not significantly different between the two burned sites. Overall, permafrost and burning had significant effects on physical soil variables. Most notably, unburned permafrost sites with the thickest organic mats consistently had the coldest temperatures and wettest mineral soil, while soils in the burned nonpermafrost sites were warmer and drier than the other soils. For every centimeter of organic mat thickness, temperature at 5 cm depth was about 0.5°C cooler during summer months. We propose that organic soil layers determine to a large extent the physical and thermal setting for variations in vegetation, decomposition, and carbon balance across these landscapes. In particular, the deep organic layers maintain the legacies of thermal and nutrient cycling governed by fire and revegetation. We further propose that the thermal influence of deep organic soil layers may be an underlying mechanism responsible for large regional patterns of burning and regrowth, detected in fractal analyses of burn frequency and area. Thus, fractal geometry can potentially be used to analyze changes in state of these fire prone systems. [source]

Effects of an experimental drought on soil emissions of carbon dioxide, methane, nitrous oxide, and nitric oxide in a moist tropical forest

Eric A. Davidson
Abstract Changes in precipitation in the Amazon Basin resulting from regional deforestation, global warming, and El Nińo events may affect emissions of carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and nitric oxide (NO) from soils. Changes in soil emissions of radiatively important gases could have feedback implications for regional and global climates. Here we report results of a large-scale (1 ha) throughfall exclusion experiment conducted in a mature evergreen forest near Santarém, Brazil. The exclusion manipulation lowered annual N2O emissions by >40% and increased rates of consumption of atmospheric CH4 by a factor of >4. No treatment effect has yet been detected for NO and CO2 fluxes. The responses of these microbial processes after three rainy seasons of the exclusion treatment are characteristic of a direct effect of soil aeration on denitrification, methanogenesis, and methanotrophy. An anticipated second phase response, in which drought-induced plant mortality is followed by increased mineralization of C and N substrates from dead fine roots and by increased foraging of termites on dead coarse roots, has not yet been detected. Analyses of depth profiles of N2O and CO2 concentrations with a diffusivity model revealed that the top 25 cm soil is the site of most of the wet season production of N2O, whereas significant CO2 production occurs down to 100 cm in both seasons, and small production of CO2 occurs to at least 1100 cm depth. The diffusivity-based estimates of CO2 production as a function of depth were strongly correlated with fine root biomass, indicating that trends in belowground C allocation may be inferred from monitoring and modeling profiles of H2O and CO2. [source]

Conversion of hardwood forests to spruce and pine plantations strongly reduced soil methane sink in Germany

Abstract Well-drained forest soils are thought to be a significant sink for atmospheric methane. Recent research suggests that land use change reduces the soil methane sink by diminishing populations of methane oxidizing bacteria. Here we report soil CH4 uptake from ,natural' mature beech forests and from mature pine and spruce plantations in two study areas of Germany with distinct climate and soils. The CH4 uptake rates of both beech forests at Solling and Unterlüß were about two,three times the CH4 uptake rates of the adjacent pine and spruce plantations, indicating a strong impact of forest type on the soil CH4 sink. The CH4 uptake rates of sieved mineral soils from our study sites confirmed the tree species effect and indicate that methanotrophs were mainly reduced in the 0,5 cm mineral soil depth. The reasons for the reduction are still unknown. We found no site effect between Solling and Unterlüß, however, CH4 uptake rates from Solling were significantly higher at the same effective CH4 diffusivity. This potential site effect was masked by higher soil water contents at Solling. Soil pH (H2O) explained 71% of the variation in CH4 uptake rates of sieved mineral soils from the 0,5 cm depth, while cation exchange capacity, soil organic carbon, soil nitrogen and total phosphorous content were not correlated with CH4 uptake rates. Comparing 1998,99, annual CH4 uptake rates increased by 69,111% in the beech and spruce stands and by 5,25% in the pine stands, due primarily to differences in growing season soil moisture. Cumulative CH4 uptake rates from November throughout April were rather constant in both years. The CH4 uptake rates of each stand were separately predicted using daily average soil matric potential and a previously developed empirical model. The model results revealed that soil matric potential explains 53,87% of the temporal variation in CH4 uptake. The differences between measured and predicted annual CH4 uptake rates were less than 10%, except for the spruce stand at Solling in 1998 (17%). Based on data from this study and from the literature, we calculated a total reduction in the soil CH4 sink of 31% for German forests due in part to conversion of deciduous to coniferous forests. [source]

Contrasting soil respiration in young and old-growth ponderosa pine forests

Abstract Three years of fully automated and manual measurements of soil CO2 efflux, soil moisture and temperature were used to explore the diel, seasonal and inter-annual patterns of soil efflux in an old-growth (250-year-old, O site) and recently regenerating (14-year-old, Y site) ponderosa pine forest in central Oregon. The data were used in conjunction with empirical models to determine which variables could be used to predict soil efflux in forests of contrasting ages and disturbance histories. Both stands experienced similar meteorological conditions with moderately cold wet winters and hot dry summers. Soil CO2 efflux at both sites showed large inter-annual variability that could be attributed to soil moisture availability in the deeper soil horizons (O site) and the quantity of summer rainfall (Y site). Seasonal patterns of soil CO2 efflux at the O site showed a strong positive correlation between diel mean soil CO2 efflux and soil temperature at 64 cm depth whereas diel mean soil efflux at the Y site declined before maximum soil temperature occurred during summer drought. The use of diel mean soil temperature and soil water potential inferred from predawn foliage water potential measurements could account for 80% of the variance of diel mean soil efflux across 3 years at both sites, however, the functional shape of the soil water potential constraint was site-specific. Based on the similarity of the decomposition rates of litter and fine roots between sites, but greater productivity and amount of fine litter detritus available for decomposition at the O site, we would expect higher rates of soil CO2 efflux at the O site. However, annual rates were only higher at the O site in one of the 3 years (597 ± 45 vs. 427 ± 80 g C m,2). Seasonal patterns of soil efflux at both sites showed influences of soil water limitations that were also reflected in patterns of canopy stomatal conductance, suggesting strong linkages between above and below ground processes. [source]

Seed variation among annual ryegrass cultivars in south-eastern USA and the relationship with seedling vigour and forage production

B. C. Venuto
Abstract Annual ryegrass (Lolium multiflorum Lam.) is grown on more than one million ha in the south-eastern USA each year. Recommended and actual seeding rates vary substantially within the region. The objective of this study was to evaluate variation in seed weight, germination, seedling vigour and seasonal yield performance among annual ryegrass cultivars. During 1997, 1998 and 1999, seed from fourteen commercial cultivars was weighed and germinated to determine numbers of pure live seed (PLS) m,2 before yield evaluation at four locations. Seed from ten cultivars was planted at 0·7 and 2·0 cm depth in a greenhouse study to evaluate relative seedling vigour. Cultivar mean single-seed weight ranged from 2·4 to 4·8 mg in 1997, 1·8 to 4·5 mg in 1998, and 2·6 to 4·6 mg in 1999. Seed germination ranged from 78·8% to 98·0% in 1997, 82·3 to 98·3% in 1998 and 77·8 to 98·3% in 1999. Seed number, PLS m,2, ranged from 675 to 1289 in 1997, 710 to 1550 in 1998, and 717 to 1179 in 1999. Among the ten cultivars evaluated for seedling vigour, seedling weight differed between planting depths and a significant cultivar by year interaction was observed. Seedling weight was highly correlated with seed weight at each seeding depth. The effect of increasing number of PLS m,2 on subsequent yield performance, although small, was consistently negative. These results indicate that target plant populations may be obtained more economically by adjusting seeding rates for seed size differences among cultivars and seed lots of annual ryegrass. [source]

Seasonal changes in herbage production and soil phosphorus contents in Japanese lawngrass (Zoysia japonica Steud.) and tall fescue (Festuca arundinacea Schreb.) pastures

Makoto Kaneko
Abstract Seasonal changes in the above-ground phosphorus (P), soil total P (TP), soil Olsen P (OP) and soil microbial biomass P (MBP) were investigated for 2 years in Japanese lawngrass (Zy) and tall fescue (Tf) pastures on Japanese Andosol, with the goal of clarifying P characteristics in the Zy pasture in comparison with the Tf pasture. The soil P attributes were measured in two soil layers (root mat layer, 0,2.5 cm depth; under layer, 5,10 cm depth). The P concentration of the above-ground herbage in the Zy pasture, which was higher than the standard value and similar to those in the Tf pasture, might have contributed to the large amounts of the above-ground P mass. The lack of plowing management and the coverage with Japanese lawngrass might have changed soil TP. The TP, the OP and the OP/TP in the Zy pasture were higher than those in the Tf pasture, and the TP, the OP and the OP/TP at the root mat layer were higher than those at the under layer. A large amount of the TP and high P availability in the soil caused the large amounts of OP. Soil pH, soil microorganisms and MBP might have affected soil P availability in the Zy pasture. Plant litter in the root mat layer of the Zy pasture may have increased soil P accumulation and its availability, which might be reasons for the high P uptake in the present study. Japanese lawngrass pasture may be a system with improved soil P utilization efficiency based on P cycling. [source]

Validation of ERS scatterometer-derived soil moisture data in the central part of the Duero Basin, Spain

Antonio Ceballos
Abstract The objective of this study was to validate the soil moisture data derived from coarse-resolution active microwave data (50 km) from the ERS scatterometer. The retrieval technique is based on a change detection method coupled with a data-based modelling approach to account for seasonal vegetation dynamics. The technique is able to derive information about the soil moisture content corresponding to the degree of saturation of the topmost soil layer (,5 cm). To estimate profile soil moisture contents down to 100 cm depth from the scatterometer data, a simple two-layer water balance model is used, which generates a red noise-like soil moisture spectrum. The retrieval technique had been successfully applied in the Ukraine in a previous study. In this paper, the performance of the model in a semi-arid Mediterranean environment characterized by low annual precipitation (400 mm), hot dry summers and sandy soils is investigated. To this end, field measurements from the REMEDHUS soil moisture station network in the semi-arid parts of the Duero Basin (Spain) were used. The results reveal a significant coefficient of determination (R2 = 0·75) for the averaged 0,100 cm soil moisture profile and a root mean square error (RMSE) of 2·2 vol%. The spatial arrangement of the REMEDHUS soil moisture stations also allowed us to study the influence of the small-scale variability of soil moisture within the ERS scatterometer footprint. The results show that the small-scale variability in the study area is modest and can be explained in terms of texture fraction distribution in the soil profiles. Copyright © 2004 John Wiley & Sons, Ltd. [source]

Nitrogen fixation and denitrification in a floodplain forest near Manaus, Brazil

Heidi Kreibich
Abstract The Amazon floodplain (várzea) is seasonally affected by water level fluctuations of the Solimőes/Amazon River. The drastic environmental changes that occur also include microbiological processes, such as nitrogen (N2) fixation and denitrification. Both processes were measured in the soil by the acetylene reduction assay and the acetylene block method in a várzea forest on Ilha de Marchantaria, Central Amazonia, Brazil. In the surface soil horizon (0,5 cm), N2 fixation was highest during the exposed period (0·04,0·26 nmolN h,1 g,1 dry weight (dw)). In contrast, denitrification varied from 0 to 1·40 nmolN h,1 g,1 dw, with high rates during the submerged and the transition periods. No significant difference between locations with legume trees, with non-legume trees and without trees could be observed. N2 fixation rates of incubations (litter down to 450 cm depth) for samples collected during the exposed period ranged from 0 to 0·11 nmolN h,1 g,1 dw, with highest rates in the surface soil horizon (0,5 cm). Denitrification ranged from 0 to 0·05 nmolN h,1 g,1 dw, with the highest rate at 250,300 cm depth, which was just below the water table. The maximum N2 fixation rate (0·89 nmolN h,1 g,1dw) and denitrification rate (0·09 nmolN h,1 g,1 dw) occurred in the litter layer. On average, at least three times as much N is lost from the surface soil horizon via denitrification than is gained by N2 fixation annually, but the rates are strongly influenced by the flood pulse. Copyright © 2003 John Wiley & Sons, Ltd. [source]