| |||
C Flux (c + flux)
Selected AbstractsBelow-ground carbon flux and partitioning: global patterns and response to temperatureFUNCTIONAL ECOLOGY, Issue 6 2008C. M. Litton Summary 1The fraction of gross primary production (GPP) that is total below-ground carbon flux (TBCF) and the fraction of TBCF that is below-ground net primary production (BNPP) represent globally significant C fluxes that are fundamental in regulating ecosystem C balance. However, global estimates of the partitioning of GPP to TBCF and of TBCF to BNPP, as well as the absolute size of these fluxes, remain highly uncertain. 2Efforts to model below-ground processes are hindered by methodological difficulties for estimating below-ground C cycling, the complexity of below-ground interactions, and an incomplete understanding of the response of GPP, TBCF and BNPP to climate change. Due to a paucity of available data, many terrestrial ecosystem models and ecosystem-level studies of whole stand C use efficiency rely on assumptions that: (i) C allocation patterns across large geographic, climatic and taxonomic scales are fixed; and (ii) c. 50% of TBCF is BNPP. 3Here, we examine available information on GPP, TBCF, BNPP, TBCF : GPP and BNPP : TBCF from a diverse global data base of forest ecosystems to understand patterns in below-ground C flux and partitioning, and their response to mean annual temperature (MAT). 4MAT and mean annual precipitation (MAP) covaried strongly across the global forest data base (37 mm increase in MAP for every 1 °C increase in MAT). In all analyses, however, MAT was the most important variable explaining observed patterns in below-ground C processes. 5GPP, TBCF and BNPP all increased linearly across the global scale range of MAT. TBCF : GPP increased significantly with MAT for temperate and tropical ecosystems (> 5 °C), but variability was high across the data set. BNPP : TBCF varied from 0·26 to 0·53 across the entire MAT gradient (,5 to 30 °C), with a much narrower range of 0·42 to 0·53 for temperate and tropical ecosystems (5 to 30 °C). 6Variability in the data sets was moderate and clear exceptions to the general patterns exist that likely relate to other factors important for determining below-ground C flux and partitioning, in particular water availability and nutrient supply. Still, our results highlight global patterns in below-ground C flux and partitioning in forests in response to MAT that in part confirm previously held assumptions. [source] Linking the global carbon cycle to individual metabolismFUNCTIONAL ECOLOGY, Issue 2 2005A. P. ALLEN Summary 1We present a model that yields ecosystem-level predictions of the flux, storage and turnover of carbon in three important pools (autotrophs, decomposers, labile soil C) based on the constraints of body size and temperature on individual metabolic rate. 2The model predicts a 10 000-fold increase in C turnover rates moving from tree- to phytoplankton-dominated ecosystems due to the size dependence of photosynthetic rates. 3The model predicts a 16-fold increase in rates controlled by respiration (e.g. decomposition, turnover of labile soil C and microbial biomass) over the temperature range 0,30 °C due to the temperature dependence of ATP synthesis in respiratory complexes. 4The model predicts only a fourfold increase in rates controlled by photosynthesis (e.g. net primary production, litter fall, fine root turnover) over the temperature range 0,30 °C due to the temperature dependence of Rubisco carboxylation in chloroplasts. 5The difference between the temperature dependence of respiration and photosynthesis yields quantitative predictions for distinct phenomena that include acclimation of plant respiration, geographic gradients in labile C storage, and differences between the short- and long-term temperature dependence of whole-ecosystem CO2 flux. 6These four sets of model predictions were tested using global compilations of data on C flux, storage and turnover in ecosystems. 7Results support the hypothesis that the combined effects of body size and temperature on individual metabolic rate impose important constraints on the global C cycle. The model thus provides a synthetic, mechanistic framework for linking global biogeochemical cycles to cellular-, individual- and community-level processes. [source] Modeling the effects of fire and climate change on carbon and nitrogen storage in lodgepole pine (Pinus contorta) standsGLOBAL CHANGE BIOLOGY, Issue 3 2009E. A. H. SMITHWICK Abstract The interaction between disturbance and climate change and resultant effects on ecosystem carbon (C) and nitrogen (N) fluxes are poorly understood. Here, we model (using CENTURY version 4.5) how climate change may affect C and N fluxes among mature and regenerating lodgepole pine (Pinus contorta var. latifolia Engelm. ex S. Wats.) stands that vary in postfire tree density following stand-replacing fire. Both young (postfire) and mature stands had elevated forest production and net N mineralization under future climate scenarios relative to current climate. Forest production increased 25% [Hadley (HAD)] to 36% [Canadian Climate Center (CCC)], compared with 2% under current climate, among stands that varied in stand age and postfire density. Net N mineralization increased under both climate scenarios, e.g., +19% to 37% (HAD) and +11% to 23% (CCC), with greatest increases for young stands with sparse tree regeneration. By 2100, total ecosystem carbon (live+dead+soils) in mature stands was higher than prefire levels, e.g., +16% to 19% (HAD) and +24% to 28% (CCC). For stands regenerating following fire in 1988, total C storage was 0,9% higher under the CCC climate model, but 5,6% lower under the HAD model and 20,37% lower under the Control. These patterns, which reflect variation in stand age, postfire tree density, and climate model, suggest that although there were strong positive responses of lodgepole pine productivity to future changes in climate, C flux over the next century will reflect complex relationships between climate, age structure, and disturbance-recovery patterns of the landscape. [source] Decline in a dominant invertebrate species contributes to altered carbon cycling in a low-diversity soil ecosystemGLOBAL CHANGE BIOLOGY, Issue 8 2008J. E. BARRETT Abstract Low-diversity ecosystems cover large portions of the Earth's land surface, yet studies of climate change on ecosystem functioning typically focus on temperate ecosystems, where diversity is high and the effects of individual species on ecosystem functioning are difficult to determine. We show that a climate-induced decline of an invertebrate species in a low-diversity ecosystem could contribute to significant changes in carbon (C) cycling. Recent climate variability in the McMurdo Dry Valleys of Antarctica is associated with changes in hydrology, biological productivity, and community composition of terrestrial and aquatic ecosystems. One of the greatest changes documented in the dry valleys is a 65% decrease in the abundance of the dominant soil invertebrate (Scottnema lindsayae, Nematoda) between 1993 and 2005, illustrating sensitivity of biota in this ecosystem to small changes in temperature. Globally, such declines are expected to have significant influences over ecosystem processes such as C cycling. To determine the implications of this climate-induced decline in nematode abundance on soil C cycling we followed the fate of a 13C tracer added to soils in Taylor Valley, Antarctica. Carbon assimilation by the dry valley nematode community contributed significantly to soil C cycling (2,7% of the heterotrophic C flux). Thus, the influence of a climate-induced decline in abundance of a dominant species may have a significant effect on ecosystem functioning in a low-diversity ecosystem. [source] A non-native invasive grass increases soil carbon flux in a Hawaiian tropical dry forestGLOBAL CHANGE BIOLOGY, Issue 4 2008CREIGHTON M. LITTON Abstract Non-native plants are invading terrestrial ecosystems across the globe, yet little is known about how invasions impact carbon (C) cycling or how these impacts will be influenced by climate change. We quantified the effect of a non-native C4 grass invasion on soil C pools and fluxes in a Hawaiian tropical dry forest over 2 years in which annual precipitation was average (Year 1) and ,60% higher than average (Year 2). Work was conducted in a series of forested plots where the grass understory was completely removed (removal plots) or left intact (grass plots) for 3 years before experiment initiation. We hypothesized that grass invasion would: (i) not change total soil C pools, (ii) increase the flux of C into and out of soils, and (iii) increase the sensitivity of soil C flux to variability in precipitation. In grass plots, grasses accounted for 25,34% of litter layer C and ,70% of fine root C. However, no differences were observed between treatments in the size of any soil C pools. Moreover, grass-derived C constituted a negligible fraction of the large mineral soil C pool (< 3%) despite being present in the system for ,50 years. Tree litterfall was ,45% lower in grass plots, but grass-derived litterfall more than compensated for this reduction in both years. Annual cumulative soil-surface CO2 efflux (Rsoil) was ,40% higher in grass plots in both years, and increased in both treatments by ,36% in the wetter Year 2. Despite minimal grass-derived mineral soil C, > 75% of Rsoil in grass plots was of C4 (i.e. grass) origin. These results demonstrate that grass invasion in forest ecosystems can increase the flux of C into and out of soils without changing total C pools, at least over the short term and as long as the native tree canopy remains intact, and that invasion-mediated changes in belowground C cycling are sensitive to precipitation. [source] Giving and receiving: measuring the carbon cost of mycorrhizas in the green orchid, Goodyera repensNEW PHYTOLOGIST, Issue 1 2008Duncan D. Cameron Summary ,,Direct measurement of the carbon (C) ,cost' of mycorrhizas is problematic. Although estimates have been made for arbuscular and ectomycorrhizal symbioses, these are based on incomplete budgets or indirect measurements. Furthermore, the conventional model of unidirectional plant-to-fungus C flux is too simplistic. Net fungus-to-plant C transfer supports seedling establishment in c. 10% of plant species, including most orchids, and bidirectional C flows occur in ectomycorrhiza utilizing soil amino acids. ,,Here, the C cost of mycorrhizas to the green orchid Goodyera repens was determined by measurement of simultaneous bidirectional fluxes of 14C labelled sources using a monoxenic system with the fungus Ceratobasidium cornigerum. ,,Transfer of C from fungus to plant (,up-flow') occurs in the photosynthesizing orchid G. repens (max. 0.06 µg) whereas over five times more current assimilate (min. 0.355 µg) is simultaneously allocated in the reverse direction to the mycorrhizal fungus (,down-flow') after 8 d. Carbon is transferred rapidly, being detected in plant,fungal respiration within 31 h of labelling. ,,This study provides the most complete C budget for an orchid,mycorrhizal symbiosis, and clearly shows net plant-to-fungus C flux. The rapidity of bidirectional C flux is indicative of dynamic transfer at an interfacial apoplast as opposed to reliance on digestion of fungal pelotons. [source] Biosynthesis of cellulose-enriched tension wood in Populus: global analysis of transcripts and metabolites identifies biochemical and developmental regulators in secondary wall biosynthesisTHE PLANT JOURNAL, Issue 2 2006Sara Andersson-Gunnerås Summary Stems and branches of angiosperm trees form tension wood (TW) when exposed to a gravitational stimulus. One of the main characteristics of TW, which distinguishes it from normal wood, is the formation of fibers with a thick inner gelatinous cell wall layer mainly composed of crystalline cellulose. Hence TW is enriched in cellulose, and deficient in lignin and hemicelluloses. An expressed sequence tag library made from TW-forming tissues in Populus tremula (L.) × tremuloides (Michx.) and data from transcript profiling using microarray and metabolite analysis were obtained during TW formation in Populus tremula (L.) in two growing seasons. The data were examined with the aim of identifying the genes responsible for the change in carbon (C) flow into various cell wall components, and the mechanisms important for the formation of the gelatinous cell wall layer (G-layer). A specific effort was made to identify carbohydrate-active enzymes with a putative function in cell wall biosynthesis. An increased C flux to cellulose was suggested by a higher abundance of sucrose synthase transcripts. However, genes related to the cellulose biosynthetic machinery were not generally affected, although the expression of secondary wall-specific CesA genes was modified in both directions. Other pathways for which the data suggested increased activity included lipid and glucosamine biosynthesis and the pectin degradation machinery. In addition, transcripts encoding fasciclin-like arabinogalactan proteins were particularly increased and found to lack true Arabidopsis orthologs. Major pathways for which the transcriptome and metabolome analysis suggested decreased activity were the pathway for C flux through guanosine 5,-diphosphate (GDP) sugars to mannans, the pentose phosphate pathway, lignin biosynthesis, and biosynthesis of cell wall matrix carbohydrates. Several differentially expressed auxin- and ethylene-related genes and transcription factors were also identified. [source] Below-ground carbon flux and partitioning: global patterns and response to temperatureFUNCTIONAL ECOLOGY, Issue 6 2008C. M. Litton Summary 1The fraction of gross primary production (GPP) that is total below-ground carbon flux (TBCF) and the fraction of TBCF that is below-ground net primary production (BNPP) represent globally significant C fluxes that are fundamental in regulating ecosystem C balance. However, global estimates of the partitioning of GPP to TBCF and of TBCF to BNPP, as well as the absolute size of these fluxes, remain highly uncertain. 2Efforts to model below-ground processes are hindered by methodological difficulties for estimating below-ground C cycling, the complexity of below-ground interactions, and an incomplete understanding of the response of GPP, TBCF and BNPP to climate change. Due to a paucity of available data, many terrestrial ecosystem models and ecosystem-level studies of whole stand C use efficiency rely on assumptions that: (i) C allocation patterns across large geographic, climatic and taxonomic scales are fixed; and (ii) c. 50% of TBCF is BNPP. 3Here, we examine available information on GPP, TBCF, BNPP, TBCF : GPP and BNPP : TBCF from a diverse global data base of forest ecosystems to understand patterns in below-ground C flux and partitioning, and their response to mean annual temperature (MAT). 4MAT and mean annual precipitation (MAP) covaried strongly across the global forest data base (37 mm increase in MAP for every 1 °C increase in MAT). In all analyses, however, MAT was the most important variable explaining observed patterns in below-ground C processes. 5GPP, TBCF and BNPP all increased linearly across the global scale range of MAT. TBCF : GPP increased significantly with MAT for temperate and tropical ecosystems (> 5 °C), but variability was high across the data set. BNPP : TBCF varied from 0·26 to 0·53 across the entire MAT gradient (,5 to 30 °C), with a much narrower range of 0·42 to 0·53 for temperate and tropical ecosystems (5 to 30 °C). 6Variability in the data sets was moderate and clear exceptions to the general patterns exist that likely relate to other factors important for determining below-ground C flux and partitioning, in particular water availability and nutrient supply. Still, our results highlight global patterns in below-ground C flux and partitioning in forests in response to MAT that in part confirm previously held assumptions. [source] Molecular investigations into a globally important carbon pool: permafrost-protected carbon in Alaskan soilsGLOBAL CHANGE BIOLOGY, Issue 9 2010M. P. WALDROP Abstract The fate of carbon (C) contained within permafrost in boreal forest environments is an important consideration for the current and future carbon cycle as soils warm in northern latitudes. Currently, little is known about the microbiology or chemistry of permafrost soils that may affect its decomposition once soils thaw. We tested the hypothesis that low microbial abundances and activities in permafrost soils limit decomposition rates compared with active layer soils. We examined active layer and permafrost soils near Fairbanks, AK, the Yukon River, and the Arctic Circle. Soils were incubated in the lab under aerobic and anaerobic conditions. Gas fluxes at ,5 and 5 °C were measured to calculate temperature response quotients (Q10). The Q10 was lower in permafrost soils (average 2.7) compared with active layer soils (average 7.5). Soil nutrients, leachable dissolved organic C (DOC) quality and quantity, and nuclear magnetic resonance spectroscopy of the soils revealed that the organic matter within permafrost soils is as labile, or even more so, than surface soils. Microbial abundances (fungi, bacteria, and subgroups: methanogens and Basidiomycetes) and exoenzyme activities involved in decomposition were lower in permafrost soils compared with active layer soils, which, together with the chemical data, supports the reduced Q10 values. CH4 fluxes were correlated with methanogen abundance and the highest CH4 production came from active layer soils. These results suggest that permafrost soils have high inherent decomposability, but low microbial abundances and activities reduce the temperature sensitivity of C fluxes. Despite these inherent limitations, however, respiration per unit soil C was higher in permafrost soils compared with active layer soils, suggesting that decomposition and heterotrophic respiration may contribute to a positive feedback to warming of this eco region. [source] Seasonal and annual variation of carbon exchange in an evergreen Mediterranean forest in southern FranceGLOBAL CHANGE BIOLOGY, Issue 4 2008V. ALLARD Abstract We present 9 years of eddy covariance measurements made over an evergreen Mediterranean forest in southern France. The goal of this study was to quantify the different components of the carbon (C) cycle, gross primary production (GPP) and ecosystem respiration (Reco), and to assess the effects of climatic variables on these fluxes and on the net ecosystem exchange of carbon dioxide. The Puéchabon forest acted as a net C sink of ,254 g C m,2 yr,1, with a GPP of 1275 g C m,2 yr,1 and a Reco of 1021 g C m,2 yr,1. On average, 83% of the net annual C sink occurred between March and June. The effects of exceptional events such the insect-induced partial canopy defoliation that occurred in spring 2005, and the spring droughts of 2005 and 2006 are discussed. A high interannual variability of ecosystem C fluxes during summer and autumn was observed but the resulting effect on the annual net C budget was moderate. Increased severity and/or duration of summer drought under climate change do not appear to have the potential to negatively impact the average C budget of this ecosystem. On the contrary, factors affecting ecosystem functioning (drought and/or defoliation) during March,June period may reduce dramatically the annual C balance of evergreen Mediterranean forests. [source] |