C Domains (c + domain)

Distribution by Scientific Domains


Selected Abstracts


The polypeptide chain release factor eRF1 specifically contacts the s4UGA stop codon located in the A site of eukaryotic ribosomes

FEBS JOURNAL, Issue 10 2001
Laurent Chavatte
It has been shown previously [Brown, C.M. & Tate, W.P. (1994) J. Biol. Chem.269, 33164,33170.] that the polypeptide chain release factor RF2 involved in translation termination in prokaryotes was able to photocrossreact with mini-messenger RNAs containing stop signals in which U was replaced by 4-thiouridine (s4U). Here, using the same strategy we have monitored photocrosslinking to eukaryotic ribosomal components of 14-mer mRNA in the presence of , and 42-mer mRNA in the presence of tRNAAsp (tRNAAsp gene transcript). We show that: (a) both 14-mer and 42-mer mRNAs crossreact with ribosomal RNA and ribosomal proteins. The patterns of the crosslinked ribosomal proteins are similar with both mRNAs and sensitive to ionic conditions; (b) the crosslinking patterns obtained with 42-mer mRNAs show characteristic modification upon addition of tRNAAsp providing evidence for appropriate mRNA phasing onto the ribosome. Similar changes are not detected with the 14-mer pairs; (c) when eukaryotic polypeptide chain release factor 1 (eRF1) is added to the ribosome·tRNAAsp complex it crossreacts with the 42-mer mRNA containing the s4UGA stop codon located in the A site, but not with the s4UCA sense codon; this crosslink involves the N-terminal and middle domains of eRF1 but not the C domain which interacts with eukaryotic polypeptide chain release factor 3 (eRF3); (d) addition of eRF3 has no effect on the yield of eRF1,42-mer mRNA crosslinking and eRF3 does not crossreact with 42-mer mRNA. These experiments delineate the in vitro conditions allowing optimal phasing of mRNA on the eukaryotic ribosome and demonstrate a direct and specific contact of ,core' eRF1 and s4UGA stop codon within the ribosomal A site. [source]


Studies on Insulin/IGF-1 Hybrid and IGF-1 Growth-Promoting Functional Region

IUBMB LIFE, Issue 4 2000
Ping Wang
Abstract Single-chain insulin/IGF-1 hybrid-[Ins/IGF-1(C)], single-chain porcine insulin precursor-(PIP), and B10Asp PIP were prepared by protein engineering. Their growth-promoting activities in mouse breast cancer cell line GR2H6 are 10, 0.2, and 2 times that of insulin, respectively, and 29%, 0.6%, and 6% of that of IGF-1, indicating that the C domain and 9Glu of IGF-1 are important for its growth-promoting activity. Given these results and previous reports, we propose that the C domain, 9Glu, and 23Phe-26Asn beta bend are involved in the growth-promoting functional region of IGF-1. [source]


Prosaposin-derived peptides enhanced sprouting of sensory neurons in vitro and induced sprouting at motor endplates in vivo

JOURNAL OF THE PERIPHERAL NERVOUS SYSTEM, Issue 3 2000
W. Marie Campana
Abstract Prosaposin exhibits neurotrophic factor properties that are localized to a 12-amino acid sequence located in the amino terminal portion of the saposin C domain. Prosaptides are peptides derived from the neurotrophic portion of prosaposin; these have been previously reported to be bioactive in neuroblastoma cell lines in vitro. We report that prosaptides were also bioactive in explants of adult primary sensory neurons by dose-dependently increasing both the number (3- to 4-fold) and elongation of these neurites by 50%. Local injection of prosaptides into the gluteus muscle of adult mice also induced sprouting at the motor endplate. Our results indicate that prosaptides are potent neuritogenic factors for both sensory and motor neurons of adult peripheral nerve. [source]


Induction of central T cell tolerance: Recombinant antibodies deliver peptides for deletion of antigen-specific CD4+8+ thymocytes

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 11 2005
Karoline, Western Schjetne
Abstract In order to prevent or ameliorate autoimmune disease, it would be desirable to induce central tolerance to peripheral self-antigens. We have investigated whether recombinant antibodies (Ab) that deliver T cell epitopes to antigen-presenting cells (APC) in the thymus can be used to induce thymocyte deletion. Troybodies are recombinant Ab with V regions specific for APC surface molecules that have T cell epitopes genetically introduced in their C domains. When MHC class II-specific Troybodies with the ,2315 T cell epitope were injected into ,2315 -specific TCR transgenic mice, a profound deletion of CD4+8+ thymocytes was observed. MHC class II-specific Troybodies were 10,100-fold more efficient than non-targeting peptide Ab, and 500-fold more efficient than synthetic peptide at inducing deletion. Similar findings were observed when MHC class II-specific Troybodies with the OVA323,339 T cell epitope were injected into OVA-specific TCR transgenic mice. Although deletion was transient after a single injection, newborn mice repeatedly injected with MHC class II-specific Troybodies for 4,weeks, had reduced antigen-specific T cells in peripheral lymphoid tissues and reduced T cell responses. These experiments suggest that Troybodies constructed to target specifically thymic APC could be useful tools for induction and maintenance of central T cell tolerance in autoimmune diseases. [source]


Role of the N- and C-terminal regions of the PufX protein in the structural organization of the photosynthetic core complex of Rhodobacter sphaeroides

FEBS JOURNAL, Issue 7 2002
Francesco Francia
The core complex of Rhodobacter sphaeroides is formed by the association of the light-harvesting antenna 1 (LH1) and the reaction center (RC). The PufX protein is essential for photosynthetic growth; it is located within the core in a 1 : 1 stoichiometry with the RC. PufX is required for a fast ubiquinol exchange between the QB site of the RC and the Qo site of the cytochrome bc1 complex. In vivo the LH1,PufX,RC complex is assembled in a dimeric form, where PufX is involved as a structural organizer. We have modified the PufX protein at the N and the C-terminus with progressive deletions. The nine mutants obtained have been characterized for their ability for photosynthetic growth, the insertion of PufX in the core LH1,RC complex, the stability of the dimers and the kinetics of flash-induced reduction of cytochrome b561 of the cytochrome bc1 complex. Deletion of 18 residues at the N-terminus destabilizes the dimer in vitro without preventing photosynthetic growth. The dimer (or a stable dimer) does not seem to be a necessary requisite for the photosynthetic phenotype. Partial C-terminal deletions impede the insertion of PufX, while the complete absence of the C-terminus leads to the insertion of a PufX protein composed of only its first 53 residues and does not affect the photosynthetic growth of the bacterium. Overall, the results point to a complex role of the N and C domains in the structural organization of the core complex; the N-terminus is suggested to be responsible mainly for dimerization, while the C-terminus is thought to be involved mainly in PufX assembly. [source]


Functional roles of the factor VIII B domain

HAEMOPHILIA, Issue 6 2009
S. W. PIPE
Summary., Unravelling the structure, function and molecular interactions of factor VIII (FVIII) throughout its life cycle from biosynthesis to clearance has advanced our understanding of the molecular mechanisms of haemophilia and the development of effective treatment strategies including recombinant replacement therapy. These insights are now influencing bioengineering strategies toward novel therapeutics. Whereas available molecular models and crystal structures have helped elucidate the structure and function of the A and C domains of FVIII, these models have not included detailed structural information of the B domain. Therefore, insights into the role of the FVIII B domain have come primarily from expression studies in heterologous systems, biochemical studies on bioengineered FVIII variants and clinical studies with B domain-deleted FVIII. This manuscript reviews the available data on the potential functional roles of the FVIII B domain. A detailed literature search was performed, and the data extracted were qualitatively summarized. Intriguing emerging evidence suggests that the FVIII B domain is involved in intracellular interactions that regulate quality control and secretion, as well as potential regulatory roles within plasma during activation, platelet binding, inactivation and clearance. [source]


Synthesis and structure of BN-doped multi-walled and single-walled carbon nanotubes

PHYSICA STATUS SOLIDI (B) BASIC SOLID STATE PHYSICS, Issue 13 2006
S. Enouz
Abstract We report on the direct synthesis of different kinds of BN,C multi-walled and single-walled nanotubes exhibiting a segregation between BN and C domains. Multi-walled BN,C nanotubes (MW-BN/C-NTs) were synthesized using the aerosol method whereas single-walled BN,C nanotubes (SW-BN/C-NTs) have been for the first time produced using a continuous CO2 -laser vaporization process [S. Enouz et al., to be published]. Degrees of purity, homogeneity and yield have been estimated from a systematic inspection of the samples by scanning electron microscopy. Structure of these tubes and spatial distribution of C, B and N as well as their chemical environments have been inspected at the nanometer scale by combining high resolution transmission microscopy and nano-electron energy loss spectroscopy. These analyses provide clear evidence of new kinds of arrangements of C, B and N within the graphene layer, which are due to the segregation properties of h-BN and graphite. Thus, combining BN and C elements into nanotubular systems can open the way to a broad range of new nanodevices. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


A cytochrome c fusion protein domain for convenient detection, quantification, and enhanced production of membrane proteins in Escherichia coli,Expression and characterization of cytochrome-tagged Complex I subunits

PROTEIN SCIENCE, Issue 8 2010
Tobias Gustavsson
Abstract Overproduction of membrane proteins can be a cumbersome task, particularly if high yields are desirable. NADH:quinone oxidoreductase (Complex I) contains several very large membrane-spanning protein subunits that hitherto have been impossible to express individually in any appreciable amounts in Escherichia coli. The polypeptides contain no prosthetic groups and are poorly antigenic, making optimization of protein production a challenging task. In this work, the C-terminal ends of the Complex I subunits NuoH, NuoL, NuoM, and NuoN from E. coli Complex I and the bona fide antiporters MrpA and MrpD were genetically fused to the cytochrome c domain of Bacillus subtilis cytochrome c550. Compared with other available fusion-protein tagging systems, the cytochrome c has several advantages. The heme is covalently bound, renders the proteins visible by optical spectroscopy, and can be used to monitor, quantify, and determine the orientation of the polypeptides in a plethora of experiments. For the antiporter-like subunits NuoL, NuoM, and NuoN and the real antiporters MrpA and MrpD, unprecedented amounts of holo-cytochrome fusion proteins could be obtained in E. coli. The NuoHcyt polypeptide was also efficiently produced, but heme insertion was less effective in this construct. The cytochrome c550 domain in all the fusion proteins exhibited normal spectra and redox properties, with an Em of about +170 mV. The MrpA and MrpD antiporters remained functional after being fused to the cytochrome c -tag. Finally, a his-tag could be added to the cytochrome domain, without any perturbations to the cytochrome properties, allowing efficient purification of the overexpressed fusion proteins. [source]