C Cycle (c + cycle)

Distribution by Scientific Domains

Kinds of C Cycle

  • global c cycle


  • Selected Abstracts


    Micromorphological evidence of black carbon in colluvial soils from NW Spain

    EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 6 2008
    J. Kaal
    Summary Biomass burning produces a residue called black carbon (BC). Black C is generally considered to be highly resistant against biodegradation and has a potential role in the global C cycle, but is difficult to identify and quantify when subjected to prolonged degradation in terrestrial sediments. The colluvial soils from Campo Lameiro (NW Spain), also known as ,Atlantic rankers', are rich in organic matter (up to 140 g C kg,1 soil). A micromorphological study was undertaken to test the hypothesis that a large proportion of the organic matter was derived from BC formed during Holocene wildfires (up to > 6000 years ago). As roughly estimated from image analysis of 12 thin sections, the volumetric BC contribution ranged between 10 and 60% (26% on average) of the organic matter. This is a conservative estimate as additional morphologically unrecognizable BC was present in the microgranular matrix of coalesced excrement. We conclude that (i) currently unknown quantities of BC are stored in Atlantic rankers and (ii) analysis of thin sections is an effective tool to identify BC. [source]


    Determination of refractory organic matter in marine sediments by chemical oxidation, analytical pyrolysis and solid-state 13C nuclear magnetic resonance spectroscopy

    EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 3 2008
    J. M. De La Rosa
    Summary Seeking to quantify the amount of refractory organic matter (ROM), which includes black carbon-like material (BC), in marine sediments, we have applied a two-step procedure that consists of a chemical oxidation with sodium chlorite of the demineralized sediments followed by integration of the aromatic C region in the remaining residues by solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. The efficacy for lignin removal was tested by analytical pyrolysis in the presence of tetramethyl ammonium hydroxide (TMAH). Riverine, estuarine and offshore marine sediment samples were collected from the southwest Atlantic coast of Spain, a site of geological and environmental interest. Measured contents of BC-like material ranged between 3.0 and 45.7% of the total organic carbon. Greater relative BC contents were found in riverine sediments close to urban areas, which show an elevated input of anthropogenic organic material. The contents of BC-like material in offshore marine sediments (5.5,6.1%) were similar to those previously reported for these kinds of samples. However, NMR and pyrolysis-GC/MS of the isolated ROM reveals that abundant refractory aliphatic organic material remains in most of the marine samples after chlorite oxidation. We suggest that this pool of aliphatic carbon may play an important role as a stable carbon pool within the global C cycle. [source]


    Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions , a review

    EUROPEAN JOURNAL OF SOIL SCIENCE, Issue 4 2006
    M. v. Lützow
    Summary Mechanisms for C stabilization in soils have received much interest recently due to their relevance in the global C cycle. Here we review the mechanisms that are currently, but often contradictorily or inconsistently, considered to contribute to organic matter (OM) protection against decomposition in temperate soils: (i) selective preservation due to recalcitrance of OM, including plant litter, rhizodeposits, microbial products, humic polymers, and charred OM; (ii) spatial inaccessibility of OM against decomposer organisms due to occlusion, intercalation, hydrophobicity and encapsulation; and (iii) stabilization by interaction with mineral surfaces (Fe-, Al-, Mn-oxides, phyllosilicates) and metal ions. Our goal is to assess the relevance of these mechanisms to the formation of soil OM during different stages of decomposition and under different soil conditions. The view that OM stabilization is dominated by the selective preservation of recalcitrant organic components that accumulate in proportion to their chemical properties can no longer be accepted. In contrast, our analysis of mechanisms shows that: (i) the soil biotic community is able to disintegrate any OM of natural origin; (ii) molecular recalcitrance of OM is relative, rather than absolute; (iii) recalcitrance is only important during early decomposition and in active surface soils; while (iv) during late decomposition and in the subsoil, the relevance of spatial inaccessibility and organo-mineral interactions for SOM stabilization increases. We conclude that major difficulties in the understanding and prediction of SOM dynamics originate from the simultaneous operation of several mechanisms. We discuss knowledge gaps and promising directions of future research. [source]


    Temperature dependence of stream benthic respiration in an Alpine river network under global warming

    FRESHWATER BIOLOGY, Issue 10 2008
    V. ACUÑA
    Summary 1. Global warming has increased the mean surface temperature of the Earth by 0.6 °C in the past century, and temperature is probably to increase by an additional 3 °C by 2100. Water temperature has also increased, which in turn can affect metabolic rate in rivers. Such an increase in metabolic rate could alter the role of river networks in the global C cycle, because the fraction of allochthonous organic C that is respired may increase. 2. Laboratory-based incubations at increasing water temperature were used to estimate the temperature dependence of benthic respiration in streams. These experiments were performed on stones taken from seven reaches with different thermal conditions (mean temperature ranging 8,19 °C) within the pre-alpine Thur River network in Switzerland, June,October 2007. 3. The activation energy of respiration in different reaches along the river network (0.53 ± 0.12 eV, n = 94) was similar, indicating that respiration was constrained by the activation energy of the respiratory complex (E = 0.62 eV). Water temperature and the thickness of the benthic biofilm influence the temperature dependence of respiration and our results suggest that an increase of 2.5 °C will increase river respiration by an average of 20 ± 1.6%. [source]


    Linking the global carbon cycle to individual metabolism

    FUNCTIONAL ECOLOGY, Issue 2 2005
    A. P. ALLEN
    Summary 1We present a model that yields ecosystem-level predictions of the flux, storage and turnover of carbon in three important pools (autotrophs, decomposers, labile soil C) based on the constraints of body size and temperature on individual metabolic rate. 2The model predicts a 10 000-fold increase in C turnover rates moving from tree- to phytoplankton-dominated ecosystems due to the size dependence of photosynthetic rates. 3The model predicts a 16-fold increase in rates controlled by respiration (e.g. decomposition, turnover of labile soil C and microbial biomass) over the temperature range 0,30 °C due to the temperature dependence of ATP synthesis in respiratory complexes. 4The model predicts only a fourfold increase in rates controlled by photosynthesis (e.g. net primary production, litter fall, fine root turnover) over the temperature range 0,30 °C due to the temperature dependence of Rubisco carboxylation in chloroplasts. 5The difference between the temperature dependence of respiration and photosynthesis yields quantitative predictions for distinct phenomena that include acclimation of plant respiration, geographic gradients in labile C storage, and differences between the short- and long-term temperature dependence of whole-ecosystem CO2 flux. 6These four sets of model predictions were tested using global compilations of data on C flux, storage and turnover in ecosystems. 7Results support the hypothesis that the combined effects of body size and temperature on individual metabolic rate impose important constraints on the global C cycle. The model thus provides a synthetic, mechanistic framework for linking global biogeochemical cycles to cellular-, individual- and community-level processes. [source]


    Postfire response of North American boreal forest net primary productivity analyzed with satellite observations

    GLOBAL CHANGE BIOLOGY, Issue 8 2003
    Jeffrey A. Hicke
    Abstract Fire is a major disturbance in the boreal forest, and has been shown to release significant amounts of carbon (C) to the atmosphere through combustion. However, less is known about the effects on ecosystems following fire, which include reduced productivity and changes in decomposition in the decade immediately following the disturbance. In this study, we assessed the impact of fire on net primary productivity (NPP) in the North American boreal forest using a 17-year record of satellite NDVI observations at 8- km spatial resolution together with a light-use efficiency model. We identified 61 fire scars in the satellite observations using digitized fire burn perimeters from a database of large fires. We studied the postfire response of NPP by analyzing the most impacted pixel within each burned area. NPP decreased in the year following the fire by 60,260 g C m,2 yr,1 (30,80%). By comparing pre- and postfire observations, we estimated a mean NPP recovery period for boreal forests of about 9 years, with substantial variability among fires. We incorporated this behavior into a carbon cycle model simulation to demonstrate these effects on net ecosystem production. The disturbance resulted in a release of C to the atmosphere during the first 8 years, followed by a small, but long-lived, sink lasting 150 years. Postfire net emissions were three times as large as from a model run without changing NPP. However, only small differences in the C cycle occurred between runs after 8 years due to the rapid recovery of NPP. We conclude by discussing the effects of fire on the long-term continental trends in satellite NDVI observed across boreal North America during the 1980s and 1990s. [source]


    Net changes in regional woody vegetation cover and carbon storage in Texas Drylands, 1937,1999

    GLOBAL CHANGE BIOLOGY, Issue 3 2003
    GREGORY P. ASNER
    Abstract Although local increases in woody plant cover have been documented in arid and semiarid ecosystems worldwide, there have been few long-term, large-scale analyses of changes in woody plant cover and aboveground carbon (C) stocks. We used historical aerial photography, contemporary Landsat satellite data, field observations, and image analysis techniques to assess spatially specific changes in woody vegetation cover and aboveground C stocks between 1937 and 1999 in a 400-km2 region of northern Texas, USA. Changes in land cover were then related to topo-edaphic setting and historical land-use practices. Mechanical or chemical brush management occurred over much of the region in the 1940,1950s. Rangelands not targeted for brush management experienced woody cover increases of up to 500% in 63 years. Areas managed with herbicides, mechanical treatments or fire exhibited a wide range of woody cover changes relative to 1937 (,75% to + 280%), depending on soil type and time since last management action. At the integrated regional scale, there was a net 30% increase in woody plant cover over the 63-year period. Regional increases were greatest in riparian corridors (33%) and shallow clay uplands (26%) and least on upland clay loams (15%). Allometric relationships between canopy cover and aboveground biomass were used to estimate net aboveground C storage changes in upland (nonriparian) portions of regional landscapes. Carbon stocks increased from 380 g C m,2 in 1937 to 500 g C m,2 in 1999, a 32% net increase across the 400 km2 region over the 63-year period. These plant C storage change estimates are highly conservative in that they did not include the substantial increases in woody plant cover observed within riparian landscape elements. Results are discussed in terms of implications for ,carbon accounting' and the global C cycle. [source]