C4 Grasses (c4 + grass)

Distribution by Scientific Domains

Kinds of C4 Grasses

  • perennial c4 grass


  • Selected Abstracts


    Physiological responses of two contrasting desert plant species to precipitation variability are differentially regulated by soil moisture and nitrogen dynamics

    GLOBAL CHANGE BIOLOGY, Issue 5 2009
    LISA D. PATRICK
    Abstract Alterations in global and regional precipitation patterns are expected to affect plant and ecosystem productivity, especially in water-limited ecosystems. This study examined the effects of natural and supplemental (25% increase) seasonal precipitation on a sotol grassland ecosystem in Big Bend National Park in the Chihuahuan Desert. Physiological responses , leaf photosynthesis at saturating light (Asat), stomatal conductance (gs), and leaf nitrogen [N] , of two species differing in their life form and physiological strategies (Dasylirion leiophyllum, a C3 shrub; Bouteloua curtipendula, a C4 grass) were measured over 3 years (2004,2006) that differed greatly in their annual and seasonal precipitation patterns (2004: wet, 2005: average, 2006: dry). Precipitation inputs are likely to affect leaf-level physiology through the direct effects of altered soil water and soil nitrogen. Thus, the effects of precipitation, watering treatment, soil moisture, and nitrogen were quantified via multivariate hierarchical Bayesian models that explicitly linked the leaf and soil responses. The two species differed in their physiological responses to precipitation and were differentially controlled by soil water vs. soil nitrogen. In the relatively deeply rooted C3 shrub, D. leiophyllum, Asat was highest in moist periods and was primarily regulated by deep (16,30 cm) soil water. In the shallow-rooted C4 grass, B. curtipendula, Asat was only coupled to leaf [N], both of which increased in dry periods when soil [N] was highest. Supplemental watering during the wet year generally decreased Asat and leaf [N] in D. leiophyllum, perhaps due to nutrient limitation, and physiological responses in this species were influenced by the cumulative effects of 5 years of supplemental watering. Both species are common in this ecosystem and responded strongly, yet differently, to soil moisture and nitrogen, suggesting that changes in the timing and magnitude of precipitation may have consequences for plant carbon gain, with the potential to alter community composition. [source]


    Are more productive varieties of Paspalum dilatatum less tolerant to drought?

    GRASS & FORAGE SCIENCE, Issue 3 2010
    L. L. Couso
    Abstract Paspalum dilatatum Poir., is a perennial C4 grass widely distributed in the Argentinean Pampas. The response to water availability for materials developed with forage-production purposes is unknown. We hypothesized that genetic differences between commercial varieties are reflected in their regrowth capacity under water stress. The effect of five levels of constant water supply on three plant varieties (two derived from apomictic materials: ,Relincho' and ,Alonso' and one from sexually-derived material: ,Primo') were examined in the greenhouse. Leaf- and plant-response traits were followed during 38 d after a single defoliation event. Seven response variables were measured: three of them were morphogenetic (leaf elongation rate, leaf appearance rate and leaf elongation duration) and four were structural (number of live leaves, lamina length, tiller biomass and tiller production). The sexual material showed higher values for growth variables than the apomictic varieties (leaf elongation rate, leaf length and tiller biomass) across the environmental range. Apomictic varieties showed a proportionally similar drought response to the sexual material for the seven variables. No intra-specific trade-off (statistical interaction) was found between growth under high water availability conditions and drought tolerance. [source]


    Stable isotope evidence for impala Aepyceros melampus diets at Akagera National Park, Rwanda

    AFRICAN JOURNAL OF ECOLOGY, Issue 4 2009
    Sandi R. Copeland
    Abstract Stable isotope analysis of tooth enamel was used to investigate the relative proportions of grass and browse in seasonal and overall diets of impala Aepyceros melampus at Akagera National Park, Rwanda. Bulk enamel samples suggest that on average, impala ate c. 86% C4 grass year-round, far more than in most previously studied impala populations across Africa. Intra-tooth samples show that seasonal changes in the proportion of C4 grass versus C3 browse are minimal (c. 10%), the diet being dominated by C4 grass year-round in contrast to other impala populations that consume ,50% browse during the dry season. Intra-tooth oxygen isotope values track carbon isotope changes to a moderate degree, but are not patterned clearly enough to permit identification of wet versus dry seasons. As other studies have shown that impala select high-protein diets, the foraging behaviour at Akagera is probably because of the availability of palatable grass for much of the year in the edaphic grasslands around the lacustrine environments of the eastern portions of Akagera National Park. Résumé L'analyse des isotopes stables de l'émail des dents a servi pour étudier les proportions relatives d'herbes et d'autres matières végétales dans le régime alimentaire saisonnier et général de l'impala Aepyceros melampus au Parc National de l'Akagera, au Rwanda. Des échantillons d'émail suggèrent qu'en moyenne, les impalas mangent c. 86% d'herbes de type C4 tout au long de l'année, beaucoup plus que la plupart des populations d'impalas étudiées ailleurs en Afrique. Les échantillons du centre des dents montrent que les changements saisonniers de la proportion d'herbes de type C4 par rapport au type C3 sont minimaux (c. 10%) et que le régime alimentaire est dominé par des herbes de type C4 toute l'année, contrairement aux autres populations d'impalas qui consomment ,50% d'autre végétation pendant la saison sèche. Les valeurs de l'isotope d'oxygène dans les dents permettent, dans une faible mesure, de détecter des changements de l'isotope de carbone, mais ils ne sont pas suffisamment définis pour permettre l'identification des saisons sèches ou humides. Comme d'autres études ont montré que les impalas sélectionnent une alimentation riche en protéines, le comportement alimentaire des impalas à l'Akagera est probablement dûà la disponibilité d'herbes goûteuses pendant une grande partie de l'année dans les prairies édaphiques qui entourent les environnements lacustres de l'est du Parc National de l'Akagera. [source]


    Low-temperature photosynthetic performance of a C4 grass and a co-occurring C3 grass native to high latitudes

    PLANT CELL & ENVIRONMENT, Issue 7 2004
    D. S. KUBIEN
    ABSTRACT The photosynthetic performance of C4 plants is generally inferior to that of C3 species at low temperatures, but the reasons for this are unclear. The present study investigated the hypothesis that the capacity of Rubisco, which largely reflects Rubisco content, limits C4 photosynthesis at suboptimal temperatures. Photosynthetic gas exchange, chlorophyll a fluorescence, and the in vitro activity of Rubisco between 5 and 35 °C were measured to examine the nature of the low-temperature photosynthetic performance of the co-occurring high latitude grasses, Muhlenbergia glomerata (C4) and Calamogrostis canadensis (C3). Plants were grown under cool (14/10 °C) and warm (26/22 °C) temperature regimes to examine whether acclimation to cool temperature alters patterns of photosynthetic limitation. Low-temperature acclimation reduced photosynthetic rates in both species. The catalytic site concentration of Rubisco was approximately 5.0 and 20 µmol m,2 in M. glomerata and C. canadensis, respectively, regardless of growth temperature. In both species, in vivo electron transport rates below the thermal optimum exceeded what was necessary to support photosynthesis. In warm-grown C. canadensis, the photosynthesis rate below 15 °C was unaffected by a 90% reduction in O2 content, indicating photosynthetic capacity was limited by the capacity of Pi -regeneration. By contrast, the rate of photosynthesis in C. canadensis plants grown at the cooler temperatures was stimulated 20,30% by O2 reduction, indicating the Pi -regeneration limitation was removed during low-temperature acclimation. In M. glomerata, in vitro Rubisco activity and gross CO2 assimilation rate were equivalent below 25 °C, indicating that the capacity of the enzyme is a major rate limiting step during C4 photosynthesis at cool temperatures. [source]


    Growth responses of African savanna trees implicate atmospheric [CO2] as a driver of past and current changes in savanna tree cover

    AUSTRAL ECOLOGY, Issue 4 2010
    BARNEY S. KGOPE
    Abstract Atmospheric CO2 has more than doubled since the last glacial maximum (LGM) and could double again within this century, largely due to anthropogenic activity. It has been suggested that low [CO2] contributed to reduced tree cover in savanna and grassland biomes at LGM, and that increasing [CO2] over the last century promoted increases in woody plants in these ecosystems over the past few decades. Despite the implications of this idea for understanding global carbon cycle dynamics and key global role of the savanna biome, there are still very few experimental studies quantifying the effects of CO2 on tree growth and demography in savannas and grasslands. In this paper we present photosynthetic, growth and carbon allocation responses of African savanna trees (Acacia karroo and Acacia nilotica) and a C4 grass, Themeda triandra, exposed to a gradient of CO2 concentrations from 180 (typical of LGM) to 1000 µmol mol,1 in open-top chambers in a glasshouse as a first empirical test of this idea. Photosynthesis, total stem length, total stem diameter, shoot dry weight and root dry weight of the acacias increased significantly across the CO2 gradient, saturating at higher CO2 concentrations. After clipping to simulate fire, plants showed an even greater response in total stem length, total stem diameter and shoot dry weight, signalling the importance of re-sprouting following disturbances such as fire or herbivory in savanna systems. Root starch (per unit root mass and total root starch per plant) increased steeply along the CO2 gradient, explaining the re-sprouting response. In contrast to the strong response of tree seedlings to the CO2 gradient, grass productivity showed little variation, even at low CO2 concentrations. These results suggest that CO2 has significant direct effects on tree recruitment in grassy ecosystems, influencing the ability of trees to recover from fire damage and herbivory. Fire and herbivore regimes that were effective in controlling tree increases in grassy ecosystems could thus be much less effective in a CO2 -rich world, but field-based tests are needed to confirm this suggestion. [source]


    Flooding and grazing promote germination and seedling establishment in the perennial grass Paspalum dilatatum

    AUSTRAL ECOLOGY, Issue 3 2009
    PATRICIA S. CORNAGLIA
    Abstract Seed germination and seedling emergence are key processes for population recruitment. Flooding and grazing are disturbances forming gaps that may strongly influence recruitment patterns in space and time, but their combined effects and action mechanisms have rarely been addressed. In this study we analysed the effects of microhabitat conditions associated with winter flooding and spring-summer defoliation on seed germination and seedling establishment of Paspalum dilatatum, a dominant perennial C4 grass in native grasslands of the Flooding Pampa, Argentina. The dynamics of seedling emergence from natural seed banks and buried seeds was studied in a factorial experiment with flooding and defoliation treatments applied to soil monoliths (mesocosms) collected from natural grassland. Additional laboratory experiments were applied to investigate seed germination under different combinations of temperature, light quality and simulated flooding. Seed germination and seedling emergence of P. dilatatum were promoted by flooding and high intensity defoliation. Gaps generated by flooding were maintained by high intensity defoliation exercising a synergistic effect on survival seedlings. Flooding resulted in the breaking of seed dormancy and higher germination rates associated with alternating temperature and the activation of the phytochrome system. Our results indicate that microhabitat conditions associated with the disturbances forming gaps, such as flooding and heavy grazing, synergistically promote the recruitment process of this dominant grass species. [source]


    Variation in the impact of exotic grasses on native plant composition in relation to fire across an elevation gradient in Hawaii

    AUSTRAL ECOLOGY, Issue 5 2000
    Carla M. D'Antonio
    Abstract The impact that an exotic species can have on the composition of the community it enters is a function of its abundance, its particular species traits and characteristics of the recipient community. In this study we examined species composition in 14 sites burned in fires fuelled by non-indigenous C4 grasses in Hawaii Volcanoes National Park, Hawaii. We considered fire intensity, time since fire, climatic zone of site, unburned grass cover, unburned native cover and identity of the most abundant exotic grass in the adjacent unburned site as potential predictor variables of the impact of fire upon native species. We found that climatic zone was the single best variable for explaining variation in native cover among burned sites and between burned and unburned pairs. Fire in the eastern coastal lowlands had a very small effect on native plant cover and often stimulated native species regeneration, whereas fire in the seasonal submontane zone consistently caused a decline in native species cover and almost no species were fire tolerant. The dominant shrub, Styphelia tameiameia, in particular was fire intolerant. The number of years since fire, fire intensity and native cover in reference sites were not significantly correlated with native species cover in burned sites. The particular species of grass that carried the fire did however, have a significant effect on native species recovery. Where the African grass Melinis minutiflora was a dominant or codominant species, fire impacts were more severe than where it was absent regardless of climate zone. Overall, the impacts of exotic grass-fuelled fires on native species composition and cover in seasonally dry Hawaiian ecosystems was context specific. This specificity is best explained by differences between the climatic zones in which fire occurred. Elevation was the main physical variable that differed among the climatic zones and it alone could explain a large percentage of the variation in native cover among sites. Rainfall, by contrast, did not vary systematically with elevation. Elevation is associated with differences in composition of the native species assemblages. In the coastal lowlands, the native grass Heteropogon contortus, was largely responsible for positive changes in native cover after fire although other native species also increased. Like the exotic grasses, this species is a perennial C4 grass. It is lacking in the submontane zone and there are no comparable native species there and almost all native species in the submontane zone were reduced by fire. The lack of fire tolerant species in the submontane zone thus clearly contributes to the devastating impact of fire upon native cover there. [source]


    Enzymatic digestibility and pretreatment degradation products of AFEX-treated hardwoods (Populus nigra)

    BIOTECHNOLOGY PROGRESS, Issue 2 2009
    Venkatesh Balan
    Abstract There is a growing need to find alternatives to crude oil as the primary feed stock for the chemicals and fuel industry and ethanol has been demonstrated to be a viable alternative. Among the various feed stocks for producing ethanol, poplar (Populus nigra × Populus maximowiczii) is considered to have great potential as a biorefinery feedstock in the United States, due to their widespread availability and good productivity in several parts of the country. We have optimized AFEX pretreatment conditions (180°C, 2:1 ammonia to biomass loading, 233% moisture, 30 minutes residence time) and by using various combinations of enzymes (commercical celluloses and xylanases) to achieve high glucan and xylan conversion (93 and 65%, respectively). We have also identified and quantified several important degradation products formed during AFEX using liquid chromatography followed by mass spectrometry (LC-MS/MS). As a part of degradation product analysis, we have also quantified oligosaccharides in the AFEX water wash extracts by acid hydrolysis. It is interesting to note that corn stover (C4 grass) can be pretreated effectively using mild AFEX pretreatment conditions, while on the other hand hardwood poplar requires much harsher AFEX conditions to obtain equivalent sugar yields upon enzymatic hydrolysis. Comparing corn stover and poplar, we conclude that pretreatment severity and enzymatic hydrolysis efficiency are dictated to a large extent by lignin carbohydrate complexes and arabinoxylan cross-linkages for AFEX. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009 [source]


    Fire and the Miocene expansion of C4 grasslands

    ECOLOGY LETTERS, Issue 7 2005
    Jon E. Keeley
    Abstract C4 photosynthesis had a mid-Tertiary origin that was tied to declining atmospheric CO2, but C4 -dominated grasslands did not appear until late Tertiary. According to the ,CO2 -threshold' model, these C4 grasslands owe their origin to a further late Miocene decline in CO2 that gave C4 grasses a photosynthetic advantage. This model is most appropriate for explaining replacement of C3 grasslands by C4 grasslands, however, fossil evidence shows C4 grasslands replaced woodlands. An additional weakness in the threshold model is that recent estimates do not support a late Miocene drop in pCO2. We hypothesize that late Miocene climate changes created a fire climate capable of replacing woodlands with C4 grasslands. Critical elements were seasonality that sustained high biomass production part of year, followed by a dry season that greatly reduced fuel moisture, coupled with a monsoon climate that generated abundant lightning-igniting fires. As woodlands became more open from burning, the high light conditions favoured C4 grasses over C3 grasses, and in a feedback process, the elevated productivity of C4 grasses increased highly combustible fuel loads that further increased fire activity. This hypothesis is supported by paleosol data that indicate the late Miocene expansion of C4 grasslands was the result of grassland expansion into more mesic environments and by charcoal sediment profiles that parallel the late Miocene expansion of C4 grasslands. Many contemporary C4 grasslands are fire dependent and are invaded by woodlands upon cessation of burning. Thus, we maintain that the factors driving the late Miocene expansion of C4 were the same as those responsible for maintenance of C4 grasslands today. [source]


    Basin geochemistry and isotopic ratios of fishes and basal production sources in four neotropical rivers

    ECOLOGY OF FRESHWATER FISH, Issue 3 2007
    David B. Jepsen
    Abstract,,, We analysed stable carbon and nitrogen isotopic ratios of dissolved inorganic carbon (DIC), plants, detritus and fishes to estimate the relative importance of dominant production sources supporting food webs of four Venezuelan rivers with divergent geochemical and watershed characteristics. Based on samples taken during the dry season at each site, fishes from two nutrient-poor, blackwater rivers had significantly lower ,13C values (mean = ,31.4, and ,32.9,) than fishes from more productive clearwater and whitewater rivers (mean = ,25.2, and ,25.6, respectively). Low carbon isotopic ratios of fishes from blackwaters were likely influenced by low ,13C of DIC assimilated by aquatic primary producers. Although floodplains of three savanna rivers supported high biomass of C4 grasses, relatively little carbon from this source appeared to be assimilated by fishes. Most fishes in each system assimilated carbon derived mostly from a combination of microalgae and C3 macrophytes, two sources with broadly overlapping carbon isotopic signatures. Even with this broad overlap, several benthivorous grazers from blackwater and whitewater rivers had isotopic values that aligned more closely with algae. We conclude that comparative stable isotopic studies of river biota need to account for watershed geochemistry that influences the isotopic composition of basal production sources. Moreover, isotopic differences between river basins can provide a basis for discriminating spatial and temporal variation in the trophic ecology of fishes that migrate between watersheds having distinct geochemical characteristics. [source]


    Chlorophyll fluorescence, predawn water potential and photosynthesis in precipitation pulse-driven ecosystems , implications for ecological studies

    FUNCTIONAL ECOLOGY, Issue 3 2008
    V. Resco
    Summary 1A major research focus in population and community ecology is to establish a mechanistic understanding of plant interactions and demographic responses. The first step towards this mechanistic approach relies on understanding the differences in stress caused by different environmental conditions. Leaf-level photosynthetic rate (A) within and among plant populations provides important insight into population and community processes, but is difficult to acquire with sufficient replication under field conditions. Instead, chlorophyll fluorescence (Fv/Fm) and predawn water potential (,pd) are often used in arid and semi-arid ecosystems. 2Fv/Fm reflects the photoactivation status of photosystem II (PSII), whereas ,pd indicates water availability in the rhizosphere. Here we compare these indices with A in two perennial C4 grasses (native Heteropogon contortus and invasive Eragrostis lehmanniana) and in seedlings of the C3 shrub Prosopis velutina growing on highly contrasting sandy loam and loamy clay soils in experimental plots. Measurements were made the day prior to and up to 7 days following a 39-mm rainfall pulse after 2 months of drought. 3A was more sensitive across a broad range of environmental conditions, whereas Fv/Fm and ,pd only responded to periods of protracted drought. The use of these measures was further complicated because their values varied daily and we observed different time-lags in their response to precipitation pulses. 4We suggest sampling schemes and a priori measurements to capture the value that is representative for the question of interest, and that match the pulsed biological activity in these ecosystems. Finally, we suggest the use of these measures in combination with measurements providing integration over longer time periods, such as ,13C, ,18O and N concentration in bulk leaf tissue. [source]


    Geoarchaeology of the Boca Negra Wash Area, Albuquerque Basin, New Mexico, USA

    GEOARCHAEOLOGY: AN INTERNATIONAL JOURNAL, Issue 8 2006
    Vance T. Holliday
    Dozens of Paleoindian sites, including the Boca Negra Wash (BNW) Folsom site (LA 124474), are scattered across a basalt plateau (the West Mesa) on the western side of the Albuquerque Basin, and adjacent uplands. The BNW site, like many others in the area, is located near a small (,60 × 90 m) playa basin that formed in a depression on the basalt surface and was subsequently covered by an eolian sand sheet (Unit 1) dated by OSL to ,23,000 yr B.P. Most of the basin fill is ,2 m of playa mud (Units 2 and 3) dating ,13,970 14C yr B.P. (17,160,16,140 cal yr B.P.) at the sand,mud interface to ,2810 14C yr B.P. (,2960,2860 cal yr B.P.) at the top. C/N ratios suggest that the BNW playa basin probably held water more often during the Folsom occupation; stable carbon isotope values indicate C3 vegetation was more common as well, but C4 grasses became dominant in the Holocene. Cores extracted from four playa basins nearby revealed a similar stratigraphy and geochronology, documenting presence of wetlands on playa floors during the Paleoindian occupation of the area. © 2006 Wiley Periodicals, Inc. [source]


    C3 grasses have higher nutritional quality than C4 grasses under ambient and elevated atmospheric CO2

    GLOBAL CHANGE BIOLOGY, Issue 9 2004
    Raymond V. Barbehenn
    Abstract Grasses with the C3 photosynthetic pathway are commonly considered to be more nutritious host plants than C4 grasses, but the nutritional quality of C3 grasses is also more greatly impacted by elevated atmospheric CO2 than is that of C4 grasses; C3 grasses produce greater amounts of nonstructural carbohydrates and have greater declines in their nitrogen content than do C4 grasses under elevated CO2. Will C3 grasses remain nutritionally superior to C4 grasses under elevated CO2 levels? We addressed this question by determining whether levels of protein in C3 grasses decline to similar levels as in C4 grasses, and whether total carbohydrate : protein ratios become similar in C3 and C4 grasses under elevated CO2. In addition, we tested the hypothesis that, among the nonstructural carbohydrates in C3 grasses, levels of fructan respond most strongly to elevated CO2. Five C3 and five C4 grass species were grown from seed in outdoor open-top chambers at ambient (370 ppm) or elevated (740 ppm) CO2 for 2 months. As expected, a significant increase in sugars, starch and fructan in the C3 grasses under elevated CO2 was associated with a significant reduction in their protein levels, while protein levels in most C4 grasses were little affected by elevated CO2. However, this differential response of the two types of grasses was insufficient to reduce protein in C3 grasses to the levels in C4 grasses. Although levels of fructan in the C3 grasses tripled under elevated CO2, the amounts produced remained relatively low, both in absolute terms and as a fraction of the total nonstructural carbohydrates in the C3 grasses. We conclude that C3 grasses will generally remain more nutritious than C4 grasses at elevated CO2 concentrations, having higher levels of protein, nonstructural carbohydrates, and water, but lower levels of fiber and toughness, and lower total carbohydrate : protein ratios than C4 grasses. [source]


    The importance of low atmospheric CO2 and fire in promoting the spread of grasslands and savannas

    GLOBAL CHANGE BIOLOGY, Issue 7 2003
    W. J. BOND
    Abstract The distribution and abundance of trees can be strongly affected by disturbance such as fire. In mixed tree/grass ecosystems, recurrent grass-fuelled fires can strongly suppress tree saplings and therefore control tree dominance. We propose that changes in atmospheric [CO2] could influence tree cover in such metastable ecosystems by altering their postburn recovery rates relative to flammable herbaceous growth forms such as grasses. Slow sapling recovery rates at low [CO2] would favour the spread of grasses and a reduction of tree cover. To test the possible importance of [CO2]/fire interactions, we first used a Dynamic Global Vegetation Model (DGVM) to simulate biomass in grassy ecosystems in South Africa with and without fire. The results indicate that fire has a major effect under higher rainfall conditions suggesting an important role for fire/[CO2] interactions. We then used a demographic model of the effects of fire on mesic savanna trees to test the importance of grass/tree differences in postburn recovery rates. We adjusted grass and tree growth in the model according to the DGVM output of net primary production at different [CO2] relative to current conditions. The simulations predicted elimination of trees at [CO2] typical of the last glacial period (180 ppm) because tree growth rate is too slow (15 years) to grow to a fire-proof size of ca. 3 m. Simulated grass growth would produce an adequate fuel load for a burn in only 2 years. Simulations of preindustrial [CO2] (270 ppm) predict occurrence of trees but at low densities. The greatest increase in trees occurs from preindustrial to current [CO2] (360 ppm). The simulations are consistent with palaeo-records which indicate that trees disappeared from sites that are currently savannas in South Africa in the last glacial. Savanna trees reappeared in the Holocene. There has also been a large increase in trees over the last 50,100 years. We suggest that slow tree recovery after fire, rather than differential photosynthetic efficiencies in C3 and C4 plants, might have been the significant factor in the Late Tertiary spread of flammable grasslands under low [CO2] because open, high light environments would have been a prerequisite for the spread of C4 grasses. Our simulations suggest further that low [CO2] could have been a significant factor in the reduction of trees during glacial times, because of their slower regrowth after disturbance, with fire favouring the spread of grasses. [source]


    Linkages between plant functional composition, fine root processes and potential soil N mineralization rates

    JOURNAL OF ECOLOGY, Issue 1 2009
    Dario A. Fornara
    Summary 1Plant functional composition may indirectly affect fine root processes both qualitatively (e.g. by influencing root chemistry) and quantitatively (e.g. by influencing root biomass and thus soil carbon (C) inputs and the soil environment). Despite the potential implications for ecosystem nitrogen (N) cycling, few studies have addressed the linkages between plant functional composition, root decay, root detritus N dynamics and soil N mineralization rates. 2Here, using data from a large grassland biodiversity experiment, we first show that plant functional composition affected fine root mass loss, root detritus N dynamics and net soil N mineralization rates through its effects on root chemistry rather than on the environment of decomposition. In particular, the presence of legumes and non-leguminous forbs contributed to greater fine root decomposition which in turn enhanced root N release and net soil N mineralization rates compared with C3 and C4 grasses. 3Second, we show that all fine roots released N immediately during decomposition and showed very little N immobilization regardless of plant composition. As a consequence, there was no evidence of increased root or soil N immobilization rates with increased below-ground plant biomass (i.e. increased soil C inputs) even though root biomass negatively affected root decay. 4Our results suggest that fine roots represent an active soil N pool that may sustain plant uptake while other soil N forms are being immobilized in microbial biomass and/or sequestered into soil organic matter. However, fine roots may also represent a source of recalcitrant plant detritus that is returned to the soil (i.e. fine roots of C4 and C3 grasses) and that can contribute to an increase in the soil organic matter pool. 5Synthesis. An important implication of our study is that the simultaneous presence of different plant functional groups (in plant mixtures) with opposite effects on root mass loss, root N release and soil N mineralization rates may be crucial for sustaining multiple ecosystem services such as productivity and soil C and N sequestration in many N-limited grassland systems. [source]


    Seasonal differences in photosynthesis between the C3 and C4 subspecies of Alloteropsis semialata are offset by frost and drought

    PLANT CELL & ENVIRONMENT, Issue 7 2008
    DOUGLAS G. IBRAHIM
    ABSTRACT The regional abundance of C4 grasses is strongly controlled by temperature, however, the role of precipitation is less clear. Progress in elucidating the direct effects of photosynthetic pathway on these climate relationships is hindered by the significant genetic divergence between major C3 and C4 grass lineages. We addressed this problem by examining seasonal climate responses of photosynthesis in Alloteropsis semialata, a unique grass species with both C3 and C4 subspecies. Experimental manipulation of rainfall in a common garden in South Africa tested the hypotheses that: (1) photosynthesis is greater in the C4 than C3 subspecies under high summer temperatures, but this pattern is reversed at low winter temperatures; and (2) the photosynthetic advantage of C4 plants is enhanced during drought events. Measurements of leaf gas exchange over 2 years showed a significant photosynthetic advantage for the C4 subspecies under irrigated conditions from spring through autumn. However, the C4 leaves were killed by winter frost, while photosynthesis continued in the C3 plants. Unexpectedly, the C4 subspecies also lost its photosynthetic advantage during natural drought events, despite greater water-use efficiency under irrigated conditions. This study highlights previously unrecognized roles for climatic extremes in determining the ecological success of C3 and C4 grasses. [source]


    Productivity and Subordinate Species Response to Dominant Grass Species and Seed Source during Restoration

    RESTORATION ECOLOGY, Issue 5 2010
    Brian J. Wilsey
    Grasses can be important regulators of species diversity and ecosystem processes in prairie systems. Although C4 grasses are usually assumed to be ecologically similar because they are in the same functional group, there may be important differences among species or between seed sources that could impact restorations. I tested whether C4 grass species identity, seed source, or grass species richness scales to influence aboveground net primary productivity (ANPP), resistance to weed invasion, or establishment of subordinate prairie species during restoration. Plots in western Iowa, United States, were planted with equal-sized transplants of one of five common grass species (Panicum virgatum L., Sorghastrum nutans (L.) Nash, Andropogon gerardii Vitman, Schizachyrium scoparium (Michx.) Nash, and Bouteloua curtipendula (Michx.) Torrey) either from local seed or from cultivar seed sources. These plots were compared to plots containing all five species in mixture and to nonplanted plots. Differences in ANPP were found among species but not between cultivars and noncultivars or between monocultures and mixtures. Panicum virgatum, S. nutans, and S. scoparium were more productive than A. gerardii and B. curtipendula. Weed invasion was much higher when plots were not planted with grasses. Schizachyrium scoparium allowed greater establishment of subordinant prairie species than all other focal grass species. There were two separate mechanisms by which grasses suppressed prairie species establishment either (1) by growing tall and capturing light or (2) by quickly filling in bare space by spreading horizontally through rhizome growth in short species. These results suggest that high ANPP can be found with noncultivar plantings during the first 2 years after planting and that subordinate species establishment is most likely when shorter bunchgrasses such as S. scoparium are dominant. [source]


    Diminishing Spatial Heterogeneity in Soil Organic Matter across a Prairie Restoration Chronosequence

    RESTORATION ECOLOGY, Issue 2 2005
    Diana R. Lane
    Abstract Habitat restoration resulting in changes in plant community composition or species dominance can affect the spatial pattern and variability of soil nutrients. Questions about how these changes in soil spatial heterogeneity develop over time at restoration sites, however, remain unaddressed. In this study, a geostatistical approach was used to quantify changes over time in the spatial heterogeneity of soil organic matter (SOM) across a 26-year chronosequence of tallgrass prairie restoration sites at FermiLab, outside of Chicago, Illinois. We used total soil N and C as an index of the quantity of SOM. We also examined changes in C:N ratio, which can influence the turnover of SOM. Specifically, the spatial structure of total N, total C, and C:N ratio in the top 10 cm of soil was quantified at a macroscale (minimum spacing of 1.5 m) and a microscale (minimum spacing of 0.2 m). The magnitude of spatial heterogeneity (MSH) was characterized as the proportion of total sample variation explained by spatially structured variation. At the macroscale, the MSH for total N decreased with time since restoration (r2= 0.99, p < 0.001). The decrease in spatial heterogeneity over time corresponded with a significant increase in the dominance of the C4 grasses. At the microscale, there was significant spatial structure for total N at the 4-year-old, 16-year-old, and 26-year-old sites, and significant spatial structure for total C at the 16-year-old and 26-year-old sites. These results suggest that an increase in dominance of C4 grasses across the chronosequence is homogenizing organic matter variability at the field scale while creating fine-scale patterns associated with the spacing of vegetation. Areas of higher soil moisture were associated with higher soil N and C at the two oldest restoration sites and at the native prairie site, potentially suggesting patches of increased belowground productivity in areas of higher soil moisture. This study is one of the first to report significant changes over time in the spatial structure of organic matter in response to successional changes initiated by restoration. [source]


    Restoration of C4 grasses with seasonal fires in a C3/C4 grassland invaded by Prosopis glandulosa, a fire-resistant shrub

    APPLIED VEGETATION SCIENCE, Issue 4 2010
    R. James Ansley
    Abstract Questions: Can prescribed fire restore C4 perennial grasses in grassland ecosystems that have become dominated by fire-resistant C3 shrubs (Prosopis glandulosa) and C3 grasses? Do fires in different seasons alter the direction of change in grass composition? Location: Texas, USA. Methods: We quantified short- and long-term (12 yr post-fire) herbaceous functional group cover and diversity responses to replicated seasonal fire treatments: (1) repeated-winter fires (three in 5 yr), (2) repeated-summer fires (two in 3 yr), and (3) alternate-season fires (two winter and one summer in 4 yr), compared with a no-fire control. Results: Summer fires were more intense than winter fires, but all fire treatments temporarily decreased Prosopis and C3 annual grass cover. The alternate-season fire treatment caused a long-term increase in C4 mid-grass cover and functional group diversity. The repeated-summer fire treatment increased C4 short-grass cover but also caused a long-term increase in bare ground. The repeated winter fire treatment had no long-term effects on perennial grass cover. Mesquite post-fire regrowth had increasingly negative impacts on herbaceous cover in all fire treatments. Conclusions: Summer fire was necessary to shift herbaceous composition toward C4 mid-grasses. However, the repeated-summer fire treatment may have been too extreme and caused post-fire herbaceous composition to "over-shift" toward less productive C4 short-grasses rather than C4 mid-grasses. This study provides some of the first long-term data showing a possible benefit of mixing seasonal fires (i.e., the alternate-season fire treatment) in a prescribed burning management plan to restore C4 mid-grass cover and enhance overall herbaceous diversity. [source]


    Variation in the impact of exotic grasses on native plant composition in relation to fire across an elevation gradient in Hawaii

    AUSTRAL ECOLOGY, Issue 5 2000
    Carla M. D'Antonio
    Abstract The impact that an exotic species can have on the composition of the community it enters is a function of its abundance, its particular species traits and characteristics of the recipient community. In this study we examined species composition in 14 sites burned in fires fuelled by non-indigenous C4 grasses in Hawaii Volcanoes National Park, Hawaii. We considered fire intensity, time since fire, climatic zone of site, unburned grass cover, unburned native cover and identity of the most abundant exotic grass in the adjacent unburned site as potential predictor variables of the impact of fire upon native species. We found that climatic zone was the single best variable for explaining variation in native cover among burned sites and between burned and unburned pairs. Fire in the eastern coastal lowlands had a very small effect on native plant cover and often stimulated native species regeneration, whereas fire in the seasonal submontane zone consistently caused a decline in native species cover and almost no species were fire tolerant. The dominant shrub, Styphelia tameiameia, in particular was fire intolerant. The number of years since fire, fire intensity and native cover in reference sites were not significantly correlated with native species cover in burned sites. The particular species of grass that carried the fire did however, have a significant effect on native species recovery. Where the African grass Melinis minutiflora was a dominant or codominant species, fire impacts were more severe than where it was absent regardless of climate zone. Overall, the impacts of exotic grass-fuelled fires on native species composition and cover in seasonally dry Hawaiian ecosystems was context specific. This specificity is best explained by differences between the climatic zones in which fire occurred. Elevation was the main physical variable that differed among the climatic zones and it alone could explain a large percentage of the variation in native cover among sites. Rainfall, by contrast, did not vary systematically with elevation. Elevation is associated with differences in composition of the native species assemblages. In the coastal lowlands, the native grass Heteropogon contortus, was largely responsible for positive changes in native cover after fire although other native species also increased. Like the exotic grasses, this species is a perennial C4 grass. It is lacking in the submontane zone and there are no comparable native species there and almost all native species in the submontane zone were reduced by fire. The lack of fire tolerant species in the submontane zone thus clearly contributes to the devastating impact of fire upon native cover there. [source]