Bulk Material (bulk + material)

Distribution by Scientific Domains
Distribution within Polymers and Materials Science


Selected Abstracts


Technique for Preparing Ultrafine Nanocrystalline Bulk Material of Pure Rare-Earth Metals,

ADVANCED MATERIALS, Issue 9 2006
X. Song
Ultrafine nanocrystalline bulk material of pure rare-earth metals has been prepared using a combination of inert gas condensation and spark plasma sintering (see figure). Some of the bulk properties such as the microhardness and specific heat capacity are remarkably improved compared to the conventional polycrystalline material. This new preparation technique enables the preparation and study of a variety of other nanostructured metal materials. [source]


From Molecule to Bulk Material: Optical Properties of Hydrogen-Bonded Dimers [C12H12N4O2AgPF6]2 and [C28H28N6O3AgPF6]2 Depend on the Arrangement of the Oxime Moieties

CHEMISTRY - A EUROPEAN JOURNAL, Issue 18 2007
Wen-Dan Cheng Prof.
Abstract The dependence of the optical properties of [C12H12N4O2AgPF6]2 (dimer-1) and [C28H28N6O3AgPF6]2 (dimer-2) on the arrangement of the oxime moieties in the molecule and in bulk crystals was investigated by means of time-dependent density functional theory. Dimer-1 with simple pyridine oxime ligands and a wavy arrangement has a smaller dipole moment and larger transition energy between the two states, and thus smaller third-order polarizabilities and two-photon absorption cross sections. Dimer-2 with extended pyridine oxime ligands and a ladder arrangement has a larger dipole moment and smaller transition energy between the two states, and thus larger third-order polarizabilities and two-photon absorption cross sections. The lowest energy absorption band is red-shifted for dimer-2 as compared with dimer-1, due to more pronounced ,,, delocalization interactions and weaker hydrogen bonding in dimer-2. The electronic absorption spectra, frequency-dependent third-order polarizabilities, and two-photon absorption cross sections involve significant contributions from charge transfers from ,/,* orbitals of the pyridine oxime ligands but no contribution from PF6, ions or H2O molecules in the wavelength range studied for the monomers and dimers of the C12H12N4O2AgPF6 and C28H28N6O3AgPF6 molecules. The third-order susceptibilities and two-photon absorption coefficients of bulk solids were estimated on the basis of the optical properties of the corresponding dimers, and the bulk material constructed from dimer-2 has the larger optical parameters of the two. [source]


Magnetism and Phase Formation in the Candidate Dilute Magnetic Semiconductor System In2,,,xCrxO3: Bulk Materials are Dilute Paramagnets,

ADVANCED FUNCTIONAL MATERIALS, Issue 5 2008
L. Bizo
Abstract Well-characterized bulk materials in the candidate dilute magnetic semiconductor system In2,,,xCrxO3 are prepared for 0,,,x,<,0.15, with cation site preferences in the bixbyite structure identified by diffraction methods. Small ferromagnetic moments are observed; their size (<10,2 µB/dopant ion) is not consistent with bulk ferromagnetism. The resulting bulk materials display dilute paramagnetic behaviour, with all of the moment expected per Cr3+ cation dopant being involved in this paramagnetic response. [source]


Nitrogen-doped zirconia single crystals

CRYSTAL RESEARCH AND TECHNOLOGY, Issue 10 2006
T.-C. Rödel
Abstract The aim of this work is the preparation of nitrogen-doped single crystals of cation-stabilized zirconia. Thin plates of these crystals were nitrided in a graphite heated resistance furnace with nitrogen as reaction gas. Several dwell times and reaction temperatures were tested and their effect on the amount of incorporated nitrogen is investigated. During nitridation at high temperatures a rock salt-type ,ZrN' layer grows on the surface, leading to the destruction of the crystal. In contrast to the fluorite-type bulk material, which can be described as a fast anion conductor, the surface layer shows electronic conductivity. For possible applications of the bulk material (solid electrolyte) the formation of the surface layer must be avoided. Therefore, the interface between surface epilayer and bulk material was investigated in detail by electron microscopy methods. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Electrokinetic-driven microfluidic system in poly(dimethylsiloxane) for mass spectrometry detection integrating sample injection, capillary electrophoresis, and electrospray emitter on-chip

ELECTROPHORESIS, Issue 24 2005
Sara Thorslund
Abstract A novel microsystem device in poly(dimethylsiloxane) (PDMS) for MS detection is presented. The microchip integrates sample injection, capillary electrophoretic separation, and electrospray emitter in a single substrate, and all modules are fabricated in the PDMS bulk material. The injection and separation flow is driven electrokinetically and the total amount of external equipment needed consists of a three-channel high-voltage power supply. The instant switching between sample injection and separation is performed through a series of low-cost relays, limiting the separation field strength to a maximum of 270,V/cm. We show that this set-up is sufficient to accomplish electrospray MS analysis and, to a moderate extent, microchip separation of standard peptides. A new method of instant in-channel oxidation makes it possible to overcome the problem of irreversibly bonded PDMS channels that have recovered their hydrophobic properties over time. The fast method turns the channel surfaces hydrophilic and less prone to nonspecific analyte adsorption, yielding better separation efficiencies and higher apparent peptide mobilities. [source]


Synthesis of the Clathrate-II K8.6(4)Ge136 by Oxidation of K4Ge9 in an Ionic Liquid

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 17 2009
Arnold M. Guloy
Abstract The new clathrate-II K8.6(4)Ge136 has been synthesized by mild oxidation of K4Ge9 in the ionic liquid n -dodecyltrimethylammonium chloride (DTAC)/AlCl3 at 300 °C and subsequent annealing at 370 °C. Refinement of the crystal structure from X-ray powder diffraction data revealed the composition K8.6(4)Ge136 [space group Fdm, a = 15.302(1) Å], which was also confirmed by energy-dispersive X-ray spectrometry (EDXS), transmission electron microscopy, and scanning electron microscopy on the bulk material. K atoms preferably occupy the larger Ge28 cages rather than the Ge20 cages in the clathrate-II structure. K8.6(4)Ge136 is metastable and was found to decompose exothermically at 471 °C. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009) [source]


Direct Current Plasma Emission Spectrometric Determination of Major, Minor and Trace Elements in Microwave Oven Acid Leachates of Powdered Whole Coal Samples

GEOSTANDARDS & GEOANALYTICAL RESEARCH, Issue 1 2005
Sandro Fadda
DCP-AES; échantillons de charbon; four à micro-ondes; éléments facilement ionisables; effets de matrice. Major concentrations of Al2O3, Fe2O3, MgO, CaO, Na2O and K2O, minor levels of TiO2, P2O5 and thirty petrologically, geochemically and environmentally significant trace elements have been determined in microwave oven acid leachates of whole powdered coal samples by direct current plasma-atomic emission spectrometry (DCP-AES). A single sample preparation procedure was suitable for all the determinations with no additional dilution step for major elements solution. Dried samples (0.5 g) were treated in low-pressure PFA digestion vessels with HF/HCl/HNO3/HClO4 acids to quantitatively extract the analytes from the bulk material, while leaving the major part of organic matrix as a residue. The major constituents of geological samples, in particular the easily ionised elements (EIEs) such as alkali and alkaline earths, may complicate the instrumental determinations in DCP-AES because of differential enhancements of elemental emission intensities and stray light interferences. Taking account of these factors, the coal matrix is considered to have very low major oxide totals as compared to many other common geo-environmental and related materials (rocks, sediments, soil, ashes etc.). The sample size employed here, while yielding a relatively concentrated solution to cover a wide range of elemental determinations, provided a sample matrix that significantly diminished interferences for DCP measurements. The need for closely matching the unknowns and calibrators was eliminated except for overall acidity and an excess quantity of caesium for EIE buffering. Calibration of the spectrometer was accomplished by simple aqueous single element solutions as high concentration calibrators in addition to a reagent blank as a low concentration calibrator. Two point working curves were established to allow for the maximum concentrations of each element expected in the unknowns. The precision of determinations under routine conditions as well as the reproducibility of the leaching and precision of instrumental measurements have been evaluated. Relative standard deviations (RSD) were of 1,2% for those elements whose concentrations in solid samples were well above the limits of quantification. Method detection limits in the buffered solutions were also evaluated. To evaluate the accuracy of the microwave oven-DCP method a suite of eight certified coal reference materials of differing rank, were analysed with good agreement with the certified and/or available published data. Results are presented for the uncertified major oxides in the AR series reference materials. Les concentrations en éléments majeurs: Al2O3, Fe2O3, MgO, CaO, Na2O et K2O, en éléments mineurs TiO2, P2O5 et en 30 éléments en trace dont le comportement est important en Pétrologie, en Géochimie et en Environnement, ont été analysées par spectrométrie d'émission atomique à plasma à courant direct (DCP-AES), dans des lessivages acides effectués dans un four à micro-ondes sur des échantillons de charbon mis en poudre. Ce mode préparatoire unique est adaptéà toutes les déterminations sans qu'il soit nécessaire d'effectuer une dilution supplémentaire pour l'analyse des éléments majeurs. Les échantillons préalablement desséchés (0.5 g) sont traités dans les pots de PFA de basse pression, avec un mélange d'acides HF/HCl/HNO3/HClO4, afin d'extraire quantitativement les analytes du matériel géologique, tout en laissant la plus grande part de la matrice organique sous forme résiduelle. Les constituants majeurs de ces échantillons géologiques, en particulier les éléments facilement ionisables (EIEs) tels que les alcalins et les alcalino-terreux, peuvent compliquer l'analyse en DCP-AES à cause des rendements variables des intensités d'émission élémentaires et des interférences de raies de lumière. Mais là dessus, la matrice de charbon se révèle être bien plus pauvre en oxydes majeurs que les autres matériaux géologiques, environnementaux ou de type proche (roches, sédiments, sols, cendres). La taille d'échantillon retenue ici, tout en fournissant une solution relativement concentrée qui permet la détermination de beaucoup d'éléments, fournit une matrice qui diminue significativement les interférences lors de la mesure par DCP-AES. Le besoin d'avoir les solutions d'échantillons et les solutions de calibration avec des matrices très proches est donc éliminé, mis à part pour l'acidité totale et la quantité excessive de Césium pour tamponner les EIE. La calibration du spectromètre est faite avec des solutions mono- élémentaires aqueuses, pour déterminer les points de concentrations élevées et avec le blanc de réactifs pour le point de concentration basse. Les courbes de calibrations sont déterminées avec 2 points, pour autoriser l'analyse de concentrations maximales pour chaque élément dans les échantillons inconnus. La précision des déterminations en conditions de routine ainsi que la reproductibilité de l'opération de lessivage et la précision instrumentale des analyses ont étéévaluées. Les déviations standards relatives (RSD) sont de 1,2% pour tout élément dont les concentrations dans le solide sont au dessus des limites de quantification. Les limites de détection de la méthode dans les solutions tamponnées ont aussi étéévaluées. Enfin, pour évaluer la justesse de cette méthode "micro-ondes - DCP" huit charbons certifiés matériaux de référence de différents types ont été analysés, et sont en bon accord avec les données certifiées ou seulement disponibles publiées. Les données sur un certain nombre d'oxydes d'éléments majeurs actuellement non certifiés sont présentées pour les matériaux de référence AR. [source]


Aldehyde-Amine Chemistry Enables Modulated Biosealants with Tissue-Specific Adhesion

ADVANCED MATERIALS, Issue 32-33 2009
Natalie Artzi
The interfacial regions between PEG: dextran-based adhesive sealant and excised rat heart, lung, liver, and duodenum tissues exhibit three distinct domains; target tissue (red and blue), bulk material (green), and an adhesive regime interposed between the two. The variation in adhesive regime morphology when applied to different tissues provides a rational approach for the engineering of application-specific surgical sealants. [source]


An adaptive spacetime discontinuous Galerkin method for cohesive models of elastodynamic fracture

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, Issue 10 2010
Reza Abedi
Abstract This paper describes an adaptive numerical framework for cohesive fracture models based on a spacetime discontinuous Galerkin (SDG) method for elastodynamics with elementwise momentum balance. Discontinuous basis functions and jump conditions written with respect to target traction values simplify the implementation of cohesive traction,separation laws in the SDG framework; no special cohesive elements or other algorithmic devices are required. We use unstructured spacetime grids in a h -adaptive implementation to adjust simultaneously the spatial and temporal resolutions. Two independent error indicators drive the adaptive refinement. One is a dissipation-based indicator that controls the accuracy of the solution in the bulk material; the second ensures the accuracy of the discrete rendering of the cohesive law. Applications of the SDG cohesive model to elastodynamic fracture demonstrate the effectiveness of the proposed method and reveal a new solution feature: an unexpected quasi-singular structure in the velocity response. Numerical examples demonstrate the use of adaptive analysis methods in resolving this structure, as well as its importance in reliable predictions of fracture kinetics. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Technique for Preparing Ultrafine Nanocrystalline Bulk Material of Pure Rare-Earth Metals,

ADVANCED MATERIALS, Issue 9 2006
X. Song
Ultrafine nanocrystalline bulk material of pure rare-earth metals has been prepared using a combination of inert gas condensation and spark plasma sintering (see figure). Some of the bulk properties such as the microhardness and specific heat capacity are remarkably improved compared to the conventional polycrystalline material. This new preparation technique enables the preparation and study of a variety of other nanostructured metal materials. [source]


Nanoparticles of CdCl2 with closed cage structures

ISRAEL JOURNAL OF CHEMISTRY, Issue 1 2001
Reshef Tenne
Nanoparticles of various layered compounds having a closed cage or nanotubular structure, designated also inorganic fullerene-like (IF) materials, have been reported in the past. In this work IF -CdCl2 nanoparticles were synthesized by two methods. In one technique, a high temperature evaporation and subsequent condensation of dried cadmium chloride powder was used. In the other method, electron beam irradiation of the source powder led to its recrystallization into closed nanoparticles with a nonhollow core. The two methods are shown to produce nanoparticles of different topologies. While mostly spherical nested structures are obtained from the high temperature process, polyhedra with hexagonal or elongated rectangular characters are obtained by the electron beam induced process. The analysis also shows that, while the source (dried) powder is orthorhombic cadmium chloride monohydrate, the crystallized IF cage consists of the anhydrous 3R polytype which is not stable as bulk material in ambient atmosphere. Consistent with previous observations, this study shows that the seamless structure of the IF materials can stabilize phases, which are otherwise unstable in ambient conditions. [source]


Harnessing Catastrophe to Promote Resource Recovery and Eco-industrial Development

JOURNAL OF INDUSTRIAL ECOLOGY, Issue 4 2009
Kristen B. Ardani
Summary Hurricane Katrina devastated New Orleans, Louisiana, USA, causing widespread damage to industry, housing, and infrastructure. The area of New Orleans East was particularly devastated, including a cluster of industries, such as a major food-processing plant, manufacturing facilities, and bulk material and gas processors. Although this area was well suited for resource recovery and eco-industrial linkages, little progress has been made in implementation. This article explores New Orleans as a case study in the application of industrial ecology to disaster management. Hurricane Katrina's damage to New Orleans resulted in a significant increase in the amount of waste flowing into New Orleans East, which precipitated a massive expenditure of federal funds toward debris management. Those circumstances created an unprecedented opportunity to capitalize a resource recovery program and to establish eco-industrial relationships, both of which would have resulted in new jobs and environmental improvement. Yet straightforward opportunities for resource recovery and eco-industrial linkage were overlooked or dismissed, in spite of antilandfill activism from the environmental community and formal recommendations for recycling from scientists and other professionals. We describe the specific resource recovery and eco-industrial opportunities that were available to New Orleans East, especially those that were magnified by Hurricane Katrina, and analyze the barriers that prevented their actualization. We also provide recommendations for overcoming barriers to resource recovery and eco-industrial progress with the goal that future postcatastrophe scenarios may benefit from more effective use of relief and recovery funding. [source]


Heat conduction in granular materials

AICHE JOURNAL, Issue 5 2001
Watson L. Vargas
Heat transfer in particulate systems is important to a vast array of industries, yet is poorly understood even in the simplest case,conduction through the solid phase. This is due in part to the stress and contact heterogeneities inherent to these systems. Heat conduction in a packet bed of cylinders is investigated both experimentally and computationally. A novel model is developed based on the Discrete Element Method, which not only sheds light on fundamental issues in heat conduction in particles, but also provides a valuable test bed for existing theories. By explicitly modeling individual particles within the bulk material, bed heterogeneities are directly included, and dynamic temperature distributions are obtained at the particle level. Comparison with experiments shows that this model yields a quantitatively accurate temperature field without the need for adjustable parameters or detailed microstructural information. This simple system may also provide insight into such phenomena as reactor hot spot formation and spontaneous combustion of bulk reactive materials. [source]


Modern Sphagnum,13C signatures follow a surface moisture gradient in two boreal peat bogs, James Bay lowlands, Québec,

JOURNAL OF QUATERNARY SCIENCE, Issue 3 2009
Julie Loisel
Abstract Carbon isotopic composition of Sphagnum macrofossils can potentially be used as a palaeohydrological tool for peat-based climatic studies since a relationship between Sphagnum ,13C values and peatland surface moisture has been presented in previous studies. In order to verify this hypothesis, modern Sphagnum,13C values were measured along a moisture (microtopographic) gradient in two boreal peat bogs. Isotopic measurements were performed on bulk material of S. fuscum, S. magellanicum, S. capillifolium and S. pulchrum. Isotopic variations found within and between Sphagnum species along the microtopographic gradient were compared using analysis of variance. A significant positive correlation (P,<,0.0001) was found between Sphagnum,13C values and their position along the surface moisture gradient. Results show that 13C-depleted values are related to low water table depths (WTD), while 13C-enriched values correspond to a water table that is close to the peat surface. Although the mechanisms underlying carbon fractionation processes in mosses are not well understood, we demonstrate that water resistance to CO2 diffusion is an important fractionation process that is observed in bulk Sphagnum,13C measurements, since drier and wetter samples exhibit consistent and very different isotopic signatures. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Preparation of lithium indium oxide via a rheological phase route and its electrochemical characteristics in LiOH and Li2SO4 solutions

PHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 1 2010
Guo-Qing Zhang
Abstract Submicrometer-sized lithium indium oxide (LiInO2) powder via a rheological phase method using trilithium citrate tetra hydrate (C6H5Li3O7,·,4H2O) and indium oxide (In2O3) has been prepared in this work for the first time. The optimal pyrolyzing temperature range to prepare crystalline LiInO2 is between 650 and 900,°C, which was confirmed by thermal gravimetric and differential thermogravimetric analysis of the precursor and X-ray diffraction analysis. The pure phase LiInO2 sample obtained has a uniform particle morphology and submicrosize, which was observed by scanning electron microscopy. The electrochemical studies show that a new pair of cathodic and anodic peaks at 0.23 and 0.38,V (vs. saturated calomel electrode) was obviously observed from the cyclic voltammetry curve of LiInO2 in 1,M LiOH solution, indicating a battery characteristic of the material in this electrolyte. While in 1,M Li2SO4 solution, the sample presents a supercapacitive characteristic within the same potential range. The reasons for different electrochemical behaviors in these two electrolytes can be attributed to the fact that the reaction of lithium ion insertion/extraction into/out of a LiInO2 electrode takes place in the bulk material in LiOH electrolyte solution, whereas it takes place on the electrode/electrolyte interface for Li2SO4 electrolyte case. [source]


Structural and optical characterization of pulsed laser-ablated potassium lithium niobate thin films

PHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 12 2009
V. Jayasree
Abstract Thin films of potassium lithium niobate (K3Li2Nb5O15: KLN) have been prepared on glass substrate, as a function of substrate temperature, using a pulsed laser-deposition (PLD) technique for the first time. Grazing-incidence X-ray diffraction (GIXRD) analysis suggests that KLN films can be grown successfully at a substrate temperature as low as 300,K. The anomalous behavior of the decline of crystalline structure with increase in substrate temperature is explained. The atomic force microscopic (AFM) and scanning electron microscopic (SEM) images show an agglomerated growth mode for the films deposited at a substrate temperature of 300,K and a decrease in grain size with increase in substrate temperature. The films deposited at higher substrate temperatures show ring-like structures. The AFM analysis shows that the rms surface roughness of the film decrease with increase in substrate temperature. The UV,Vis transmission spectra suggest that the nature of the transition in the films is directly allowed. A blue shift in optical bandgap is observed for the films compared to bulk material. The changes in the optical bandgap with substrate temperature are also discussed. [source]


Effect of composition on the optical properties of the quaternary CuxAg1,xInTe2 thin films

PHYSICA STATUS SOLIDI (A) APPLICATIONS AND MATERIALS SCIENCE, Issue 1 2003
E. A. El-Sayad
Abstract Thin films of CuxAg1,xInTe2 solid solutions (x = 0.25, 0.50 and 0.75) were deposited by thermal evaporation of prereacted materials on glass substrates. X-ray diffraction (XRD) studies has revealed that the as-deposited and thermally annealed films are polycrystalline with single-phase of a tetragonal chalcopyrite structure as that of bulk material with (112) predominant reflecting plane. The films compositions were confirmed by using energy dispersive analysis of X-rays (EDAX). The refractive index, n, and the extinction coefficient, k, of the annealed films with different compositions were determined in the spectral range, 400,2500 nm. Three characteristic energy gaps have been determined from the analysis of optical absorption spectrum for each composition. The three energy gaps are attributed to the optical transitions from the valence sub-bands to the conduction band minimum. Besides, a fourth energy gap has also been obtained for each composition, which may be attributed to the transition from the copper 3d-level to the conduction band minimum. However, the band gaps showed linear variation with the value of x. [source]


Elastic properties of nanowires

PHYSICA STATUS SOLIDI (B) BASIC SOLID STATE PHYSICS, Issue 10 2010
Claus-Christian Röhlig
Abstract The elastic properties of metallic and semiconducting nanowires were analyzed by different techniques employing static and dynamic loads. The reliability of the methods is verified by analyzing well defined microstructures and a good agreement for the values of the Young's modulus determined by the different methods was achieved. For the investigated materials systems (Au, W, Si, InN), basically no differences in the Young's moduli were observed between microstructures, bulk material, and nanowires with radii of 20,300,nm. Microstructure, morphological undulation, defects, and contaminations, however, can drastically change the apparent Young's moduli of nanowires. Examples are given, where an apparent increasing or decreasing of the Young's modulus with decreasing diameter is caused by such effects. The same effects have also influence on the fracture strength in nanowires. While perfect Au nanowires exhibit fracture strengths exceeding the bulk values up to two orders of magnitude, any anomaly causes earlier failure. In addition, failure mechanisms are observed to be dependent on the microstructure. While single crystalline Au nanowires have shown a pure elastic deformation upon load, polycrystalline nanowires show a remarkable plastic deformation before breaking. [source]


Optical properties of single ZnO nanowires

PHYSICA STATUS SOLIDI (B) BASIC SOLID STATE PHYSICS, Issue 4 2006
L. Wischmeier
Abstract The optical properties of single ZnO nanowires with diameters <200 nm are analyzed. A comparison of the photoluminescence properties of the as-grown ensemble and of an individual nanowire is given. The temperature dependence of the individual nanowire photoluminescence shows the same behavior as that of bulk material due to the wire diameter being very large compared to the exciton Bohr radius of ZnO. Furthermore, high excitation-density measurements performed on an individual nanowire are presented in which a sharp line is observed resulting from resonator effects inside the wire. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Transport properties in n-type AlGaN/AlN/GaN-superlattices

PHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 6 2008
J. Hertkorn
Abstract In order to improve the lateral conductivity in optoelectronic devices, we have investigated Si-doped AlGaN/AlN/GaN-superlattices. As a first step we performed calculations of the band structure of Al-GaN/AlN/GaN modulation doped multi heterostructures. Based on these results we worked on optimizing the growth of low Al content (xAl, 20%) superlattices by MOVPE. Several tens of abrupt and graded AlGaN/AlN/GaN-layer pairs could be grown crack-free on 2 ,m thick n-GaN layers deposited on sapphire substrates with AlN nucleation. By Van-der-Pauw Hall measurements, we determined that the lateral conductivity of a 1.5 ,m thick superlattice structure is a factor of four higher than in highly n-doped bulk material with comparable thickness without compromising too much the vertical conductivity as confirmed by two step TLM-measurements. At 4K we could demonstrate an extremely high effective mobility of 18760 cm2/Vs at n=2×1014 cm,2 (R=1.6,/®), a clear verification of our excellent crystal quality. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Defect-selective etching of aluminum nitride single crystals

PHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 7 2007
M. Bickermann
Abstract We have investigated defect-selective wet chemical etching of freestanding AlN single crystals in a molten NaOH-KOH eutectic at temperatures ranging from 240 °C to 400 °C. On nitrogen polar basal planes, hexagonal pyramids/hillocks exceeding 100 µm in diameter may form within seconds of etching at 240 °C. They sometimes are arranged in lines and clusters, thus we attribute them to defects on the surface, presumably originating in the bulk material. On aluminum polar basal planes, the etch pit density after approx. 2,3 min of total etching time at 350 °C corresponds to the screw dislocation density. Additionally, significantly smaller etch pits were found around annealed indentations, in the vicinity of some bigger etch pits after repeated etching, and sometimes also isolated on the surface area. We attribute these etch pits to threading mixed and edge dislocations. On as-grown rhombohedral and prismatic facets no defect-related etching features were observed. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


YIG thin films for magneto-optical and microwave applications

PHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 12 2004
T. Boudiar
Abstract Thin films of Yttrium Iron Garnet (YIG) are grown by radio frequency magnetron non reactive sputtering system on quartz and Gadolinium Gallium Garnet (GGG) for optical applications or alumina substrates for microwave applications. A post deposition annealing is needed to obtain the crystallization of YIG films and the magnetic properties which are correlated with the magneto-optical properties. Their crystallographic, morphologic and magnetic properties are explored. The variation of Faraday rotation is studied versus the wavelength. For both optical substrates, quartz and GGG, results are comparable with the literature for bulk material. A microwave isolator was realized with YIG thin film on alumina substrate in a coplanar configuration. (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Magnetic-Field Induced Strains in Ferromagnetic Shape Memory Alloy Ni55Mn23Ga22 Deposited by RF-Magnetron Sputtering

PLASMA PROCESSES AND POLYMERS, Issue S1 2009
Florent Bernard
Abstract 1.5,µm,Ni55Mn23Ga22 ferromagnetic thin films were deposited onto silicon substrates and silicon single beam cantilever using radio-frequency magnetron sputtering. As-deposited sample and heat-treated thin films were studied on their silicon substrates and peeled off to determine the influence of the stress. Post-heat treatment process allows at the films to achieve the shape memory effect (SME). Vibrating sample magnetometer (VSM) and deflection measurement of the sample annealed at 873,K during 36,ks exhibit ferromagnetic martensitic structure with a typical SME response to the magnetic field induced strains which match the values of the bulk material. [source]


The effect of annealing on the nonlinear viscoelastic response of isotactic polypropylene

POLYMER ENGINEERING & SCIENCE, Issue 4 2003
Aleksey D. Drozdov
Three series of tensile relaxation tests are performed on isotactic polypropylene at room temperature in the vicinity of the yield point. In the first series of experiments, injection-molded samples are used without thermal pre-treatment. In the second and third series, the specimens are annealed at 130°C for 4 and 24 hours, respectively. Constitutive equations are derived for the time-dependent response of semicrystalline polymers at isothermal loading with small strains. A polymer is treated as an equivalent temporary network of macromolecules bridged by junctions (physical cross-links, entanglements and crystalline lamellae). Under loading, junctions slide with respect to their positions in the bulk material (which reflects the viscoplastic behavior), whereas active strands separate from their junctions and dangling strands merge with the network at random times (which reflects the viscoelastic response). The network is thought of as an ensemble of meso-regions (MRs) with various activation energies for detachment of chains from temporary nodes. Adjustable parameters in the stress-strain relations are found by fitting the observations. The experimental data demonstrate that the relaxation spectrum (characterized by the distribution of MRs with various potential energies) is independent of mechanical factors, but is altered at annealing. For specimens not subjected to thermal treatment, the growth of longitudinal strain does not affect the volume fraction of active MRs and the attempt rate for detachment of chains from their junctions. For annealed samples, the concentration of active MRs increases and the attempt rate decreases with strain. These changes in the time-dependent response are attributed to broadening of the distribution of strengths of lamellae at annealing. [source]


Interplay Between Kinetically Slow Thermal Spin-Crossover and Metastable High-Spin State Relaxation in an Iron(II) Complex with Similar T1/2 and T(LIESST)

CHEMISTRY - A EUROPEAN JOURNAL, Issue 19 2007
Victoria
Abstract This paper describes the first material to show the well-known light-induced excited spin-state trapping (LIESST) effect, the metastable excited state of which relaxes at a temperature approaching its thermal spin-crossover. Cooling polycrystalline [FeL2][BF4]2,x,H2O (L=2,6-bis{3-methylpyrazol-1-yl}pyridine; x=0,1/3) at 1,K,min,1 leads to a cooperative spin transition, taking place in two steps centered at 147 and 105,K, that is only 54,% complete by magnetic susceptibility. Annealing the sample at 100,K for 2,h results in a slow decrease in ,MT to zero, showing that the remainder of the spin-crossover can proceed, but is kinetically slow. The crystalline high- and fully low-spin phases of [FeL2][BF4]2,x,H2O are isostructural (C2/c, Z=8), but the spin-crossover proceeds via a mixed-spin intermediate phase that has a triple unit cell (C2/c, Z=24). The water content of the crystals is slowly lost on exposure to air without causing decomposition. However, the high-spin/mixed-spin transition in the crystal proceeds at 110±20,K when x=1/3 and 155±5,K when x=0, which correspond to the two spin-crossover steps seen in the bulk material. The high-spin state of the compound is generated quantitatively by irradiation of the low-spin or the mixed-spin phase at 10,K, and in approximately 70,% yield by rapidly quenching the sample to 10,K. This metastable high-spin state relaxes back to the low-spin ground state at 87±1,K in one, not two, steps, and without passing through the intermediate phase. This implies that thermal spin-crossover and thermally activated high-spin,low-spin relaxation in this material become decoupled, thus avoiding the physical impossibility of T(LIESST) being greater than T1/2. [source]


From Molecule to Bulk Material: Optical Properties of Hydrogen-Bonded Dimers [C12H12N4O2AgPF6]2 and [C28H28N6O3AgPF6]2 Depend on the Arrangement of the Oxime Moieties

CHEMISTRY - A EUROPEAN JOURNAL, Issue 18 2007
Wen-Dan Cheng Prof.
Abstract The dependence of the optical properties of [C12H12N4O2AgPF6]2 (dimer-1) and [C28H28N6O3AgPF6]2 (dimer-2) on the arrangement of the oxime moieties in the molecule and in bulk crystals was investigated by means of time-dependent density functional theory. Dimer-1 with simple pyridine oxime ligands and a wavy arrangement has a smaller dipole moment and larger transition energy between the two states, and thus smaller third-order polarizabilities and two-photon absorption cross sections. Dimer-2 with extended pyridine oxime ligands and a ladder arrangement has a larger dipole moment and smaller transition energy between the two states, and thus larger third-order polarizabilities and two-photon absorption cross sections. The lowest energy absorption band is red-shifted for dimer-2 as compared with dimer-1, due to more pronounced ,,, delocalization interactions and weaker hydrogen bonding in dimer-2. The electronic absorption spectra, frequency-dependent third-order polarizabilities, and two-photon absorption cross sections involve significant contributions from charge transfers from ,/,* orbitals of the pyridine oxime ligands but no contribution from PF6, ions or H2O molecules in the wavelength range studied for the monomers and dimers of the C12H12N4O2AgPF6 and C28H28N6O3AgPF6 molecules. The third-order susceptibilities and two-photon absorption coefficients of bulk solids were estimated on the basis of the optical properties of the corresponding dimers, and the bulk material constructed from dimer-2 has the larger optical parameters of the two. [source]


Synthesis and Characterization of Single-Crystalline Lanthanum Fluoride with a Ring-Like Nanostructure

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 16 2009
Yang Tian
Abstract LaF3 ring-like nanostructures with a diameter of less than 2 ,m have been fabricated by a facile, effective, and environmentally friendly molten salt synthesis route in which NaNO3 and KNO3 (2:1 molar ratio) act as reaction media and the rare-earth nitrate and NaF as precursor. X-ray diffraction, TEM, HR-TEM, energy dispersive X-ray spectroscopy, and photoluminescence spectroscopy are all used to characterize the as-prepared samples. Experiments peformed with different reaction times indicate that a central-etching of the plates from the inner part towards the edge during nanocrystal growth plays a key role in the formation of LaF3 nanorings since no other templates/surfactants are present in our system. Additionally, the luminescence properties of LaF3 nanorings doped with Eu3+ cation have been investigated andcompared with those of bulk materials and nanoparticles with a size of approximately 50 nm. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009) [source]


Anomalous Oxidation States in Multilayers for Fuel Cell Applications

ADVANCED FUNCTIONAL MATERIALS, Issue 16 2010
James M. Perkins
Abstract Significant recent interest has been directed towards the relationship between interfaces and reports of enhanced ionic conductivity. To gain a greater understanding of the effects of hetero-interfaces on ionic conductivity, advanced analytical techniques including electron microscopy (TEM/STEM), electron energy loss spectroscopy (EELS), and secondary ion mass spectrometry (SIMS) are used to characterize CeO2/Ce0.85Sm0.15O2 multilayer thin films grown by pulsed laser deposition. High quality growth is observed, but ionic conductivity measured by impedance spectroscopy and 18O tracer experiments is consistent with bulk materials. EELS analysis reveals the unusual situation of layers containing only Ce(IV) adjacent to layers containing both Ce(III) and Ce(IV). Post oxygen annealing induced oxygen diffusion and mixed oxidation states in both layers, but only in the vicinity of low angle grain boundaries perpendicular to the layers. The implications of the anomalous behavior of the Ce oxidation states on the design of novel electrolytes for solid oxide fuel cells is discussed. [source]


Identification of Quaternary Shape Memory Alloys with Near-Zero Thermal Hysteresis and Unprecedented Functional Stability

ADVANCED FUNCTIONAL MATERIALS, Issue 12 2010
Robert Zarnetta
Abstract Improving the functional stability of shape memory alloys (SMAs), which undergo a reversible martensitic transformation, is critical for their applications and remains a central research theme driving advances in shape memory technology. By using a thin-film composition-spread technique and high-throughput characterization methods, the lattice parameters of quaternary Ti,Ni,Cu,Pd SMAs and the thermal hysteresis are tailored. Novel alloys with near-zero thermal hysteresis, as predicted by the geometric non-linear theory of martensite, are identified. The thin-film results are successfully transferred to bulk materials and near-zero thermal hysteresis is observed for the phase transformation in bulk alloys using the temperature-dependent alternating current potential drop method. A universal behavior of hysteresis versus the middle eigenvalue of the transformation stretch matrix is observed for different alloy systems. Furthermore, significantly improved functional stability, investigated by thermal cycling using differential scanning calorimetry, is found for the quaternary bulk alloy Ti50.2Ni34.4Cu12.3Pd3.1. [source]


Enhancement of Thermoelectric Figure-of-Merit by a Bulk Nanostructuring Approach

ADVANCED FUNCTIONAL MATERIALS, Issue 3 2010
Yucheng Lan
Abstract Recently a significant figure-of-merit (ZT) improvement in the most-studied existing thermoelectric materials has been achieved by creating nanograins and nanostructures in the grains using the combination of high-energy ball milling and a direct-current-induced hot-press process. Thermoelectric transport measurements, coupled with microstructure studies and theoretical modeling, show that the ZT improvement is the result of low lattice thermal conductivity due to the increased phonon scattering by grain boundaries and structural defects. In this article, the synthesis process and the relationship between the microstructures and the thermoelectric properties of the nanostructured thermoelectric bulk materials with an enhanced ZT value are reviewed. It is expected that the nanostructured materials described here will be useful for a variety of applications such as waste heat recovery, solar energy conversion, and environmentally friendly refrigeration. [source]