| |||
Bubble Nucleation (bubble + nucleation)
Selected AbstractsExperimental study of the flow boiling heat transfer enhancement and pressure drop due to the bubble behavior restricted by a screen sheetHEAT TRANSFER - ASIAN RESEARCH (FORMERLY HEAT TRANSFER-JAPANESE RESEARCH), Issue 4 2003Katsuhiko Kadoguchi Abstract A unique method previously proposed by the authors was applied to the heat transfer augmentation in the flow boiling field. In this method a screen sheet was placed on the horizontal heated surface where bubble nucleation occurred. Generated vapor bubbles were trapped between the screen and the wall, became flat, and moved along the surface. This restricted bubble behavior caused the heat transfer enhancement. Three types of screen sheet were tested in the present experiment and the effect of the screen on the heat transfer and two-phase flow characteristics was investigated. In two of these cases, the screen was displaced upward by the bubble nucleation. Compared with the ordinary flow boiling case, heat transfer was enhanced by a factor of 1.2 to 6 within the present experimental range. Using a simple flow model, it was made clear that the effect of the height of the displaced screen was important in evaluating the increase in pressure drop. © 2003 Wiley Periodicals, Inc. Heat Trans Asian Res, 32(4): 319,329, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/htj.10094 [source] Ultrasonic Investigation of the Effect of Vegetable Shortening and Mixing Time on the Mechanical Properties of Bread DoughJOURNAL OF FOOD SCIENCE, Issue 9 2009K.L. Mehta ABSTRACT:, Mixing is a critical stage in breadmaking since it controls gluten development and nucleation of gas bubbles in the dough. Bubbles affect the rheology of the dough and largely govern the quality of the final product. This study used ultrasound (at a frequency where it is sensitive to the presence of bubbles) to nondestructively examine dough properties as a function of mixing time in doughs prepared from strong red spring wheat flour with various amounts of shortening (0%, 2%, 4%, 8% flour weight basis). The doughs were mixed for various times at atmospheric pressure or under vacuum (to minimize bubble nucleation). Ultrasonic velocity and attenuation (nominally at 50 kHz) were measured in the dough, and dough density was measured independently from specific gravity determinations. Ultrasonic velocity decreased substantially as mixing time increased (and more bubbles were entrained) for all doughs mixed in air; for example, in doughs made without shortening, velocity decreased from 165 to 105 ms,1, although superimposed on this overall decrease was a peak in velocity at optimum mixing time. Changes in attenuation coefficient due to the addition of shortening were evident in both air-mixed and vacuum-mixed doughs, suggesting that ultrasound was sensitive to changes in the properties of the dough matrix during dough development and to plasticization of the gluten polymers by the shortening. Due to its ability to probe the effect of mixing times and ingredients on dough properties, ultrasound has the potential to be deployed as an online quality control tool in the baking industry. [source] Nanocellular Foams of PS/PMMA Polymer BlendsMACROMOLECULAR MATERIALS & ENGINEERING, Issue 1 2008Tetsuo Otsuka Abstract A nanocellular PS/PMMA polymer blend foam was prepared, where bubble nucleation was localized in the PMMA domains. The blend, which contains dispersed nanoscale PMMA islands, was prepared by polymerizing MMA monomers in a PS matrix to form highly dispersed PMMA domains in the PS matrix by diffusion mixing. The resulting blend was foamed with CO2 at room temperature. A higher depressurization rate at lower foaming temperature made the bubble diameter smaller and the bubble density larger, and a higher PS composition in the blend resulted in a larger bubble density. A void with 40,50 nm in average diameter and a pore density of 8.5,×,1014 cm,3 was obtained as for the finest nanocellular foams. [source] Formation and characterization of polyurethane,vermiculite clay nanocomposite foamsPOLYMER ENGINEERING & SCIENCE, Issue 9 2008T. Umasankar Patro Nanocomposites of rigid polyurethane foam with unmodified vermiculite clay are synthesized. The clay is dispersed either in polyol or isocyanate before blending. The viscosity of the polyol is found to increase slightly on the addition of clay up to 5 pphp (parts per hundred parts of polyol by weight). The gel time and rise time are significantly reduced by the addition of clay, indicating that the clay acts as a heterogeneous catalyst for the foaming and polymerization reactions. X-ray diffraction and transmission electron microscopy of the polyurethane composite foams indicate that the clay is partially exfoliated in the polymer matrix. The clay is found to induce gas bubble nucleation resulting in smaller cells with a narrower size distribution in the cured foam. The closed cell content of the clay nanocomposite foams increases slightly with clay concentration. The mechanical properties are found to be the best at 2.3 wt% of clay when the clay is dispersed in the isocyanate; the compressive strength and modulus normalized to a density of 40 kg/m3 are 40% and 34% higher than the foam without clay, respectively. The thermal conductivity is found to be 10% lower than the foam without clay. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers [source] Conventional and nanometric nucleating agents in poly(,-caprolactone) foaming: Crystals vs. bubbles nucleationPOLYMER ENGINEERING & SCIENCE, Issue 2 2008Carlo Marrazzo The aim of this article was to investigate the nucleating ability of different nucleating agents for the foaming of poly(,-caprolactone), a biodegradable, semicrystalline polymer. In particular, the efficiency of the nucleating agent in inducing the formation of the gaseous phase has been compared to the efficiency in inducing the formation of the crystalline phase. In effect, in foaming of semicrystalline polymers, bubble nucleation and crystal nucleation are concurrent and somehow interacting phenomena. Here, these two aspects have been evidenced and clarified. Foams were prepared by using a batch process with the pressure quench method, with nitrogen and carbon dioxide as the blowing agents. Conventional and novel nucleating agents were used: talc has been compared to several novel nanometric particles of different geometries and dimensions, such as titanium dioxide and alumina powders, exfoliated and intercalated clays, and carbon nanotubes. Foam densities and morphologies, in terms of number of cells per initial unit volume, were measured and found to depend both on crystalline phase nucleation and gaseous phase nucleation. In fact, the different nucleating agents, depending on shape, dimension, and surface functionalization, selectively nucleated the crystallites and/or the bubbles, affecting, respectively, bubble growth (and, hence, final foam density) and bubble nucleation (and, hence, cell number density,morphology). POLYM. ENG. SCI., 2008. © 2007 Society of Plastics Engineers [source] Visual observation of CO2 foaming of polypropylene-clay nanocompositesPOLYMER ENGINEERING & SCIENCE, Issue 6 2004Kentaro Taki Using a newly developed high-pressure autoclave, which has two sapphire windows on the walls, we visually observed the batch physical foaming of polymer-clay nanocomposites to understand the effect of nano-sized clay on the initial stage of foaming. With CO2 as a physical foaming agent, polypropylene-montmorillonite clay nanocomposites were foamed at 150°C. A high-speed digital camera with a microscope could observe the bubble nucleation and bubble growth behavior of the early stage of foaming in situ. The series of micrographs was analyzed in order to investigate the effect of clay content on bubble nucleation and growth. The experiments, together with CO2 -solubility and diffusivity data, show that the clay enhances bubble nucleation as a nucleation agent and retards the growth of bubbles at the early stage of foaming. Polym. Eng. Sci. 44:1004,1011, 2004. © 2004 Society of Plastics Engineers. [source] Conventional and nanometric nucleating agents in poly(,-caprolactone) foaming: Crystals vs. bubbles nucleationPOLYMER ENGINEERING & SCIENCE, Issue 2 2008Carlo Marrazzo The aim of this article was to investigate the nucleating ability of different nucleating agents for the foaming of poly(,-caprolactone), a biodegradable, semicrystalline polymer. In particular, the efficiency of the nucleating agent in inducing the formation of the gaseous phase has been compared to the efficiency in inducing the formation of the crystalline phase. In effect, in foaming of semicrystalline polymers, bubble nucleation and crystal nucleation are concurrent and somehow interacting phenomena. Here, these two aspects have been evidenced and clarified. Foams were prepared by using a batch process with the pressure quench method, with nitrogen and carbon dioxide as the blowing agents. Conventional and novel nucleating agents were used: talc has been compared to several novel nanometric particles of different geometries and dimensions, such as titanium dioxide and alumina powders, exfoliated and intercalated clays, and carbon nanotubes. Foam densities and morphologies, in terms of number of cells per initial unit volume, were measured and found to depend both on crystalline phase nucleation and gaseous phase nucleation. In fact, the different nucleating agents, depending on shape, dimension, and surface functionalization, selectively nucleated the crystallites and/or the bubbles, affecting, respectively, bubble growth (and, hence, final foam density) and bubble nucleation (and, hence, cell number density,morphology). POLYM. ENG. SCI., 2008. © 2007 Society of Plastics Engineers [source] |