Brown Et Al. (brown + et_al)

Distribution by Scientific Domains


Selected Abstracts


Alcohol expectancies in convicted rapists and child molesters

CRIMINAL BEHAVIOUR AND MENTAL HEALTH, Issue 2 2001
Anu S. Aromäki PhD
Background Previous findings suggest that cognitive factors and expectancies related to drinking can mediate subjective sexual arousal as well as aggression in men. Our aim was to investigate the drinking habits and alcohol-related expectancies that might predispose men to sexually aggress in two groups of sexual offenders. Method Men convicted of rape (n = 10) were compared with men convicted of child molesting (n = 10) and with control subjects (n = 31). Current drinking habits (while not in prison) were assessed by self-report, and the extent of alcohol abuse was mapped by the Michigan Alcoholism Screening Test (MAST; Selzer, 1971). Cognitive expectancies related to alcohol use were explored by the standard Alcohol Expectancy Questionnaire (AEQ; Brown et al., 1980). Results The majority of the men who committed rape (70%) but only a third of the men convicted of child molesting were diagnosed with antisocial personality disorder. Alcohol abuse was common in men convicted of both rape and child molesting and the men convicted of rape expected significantly more positive effects from drinking than the control group. Both sex offender groups were the only groups to express significant alcohol-related cognitive expectancies linked to arousal and aggression. Expectancy patterns were directly linked to the antisocial personality characteristics. Conclusion Alcohol abuse is common in men who commit both rape and child molesting. Heavy drinking and the anticipation of alcohol effects such as sexual enhancement, arousal and aggression may facilitate sexual aggression in offenders with antisocial personality disorder. Copyright © 2001 Whurr Publishers Ltd. [source]


TCDD causes suppression of growth and differentiation of MCF10A, human mammary epithelial cells by interfering with their insulin receptor signaling through c-Src kinase and ERK activation

JOURNAL OF BIOCHEMICAL AND MOLECULAR TOXICOLOGY, Issue 6 2005
Sujin Park
Abstract One of the proposed mechanisms of carcinogenic action of TCDD (=dioxin) on breast cells is that it causes significant inhibition of proper differentiation of mammary duct epithelial cells and thereby increases the number of terminal end buds, which are susceptible to other carcinogens (Fenton et al., Toxicol Sci 2002;67:63,74; Brown et al., Carcinogenesis 1998; 19:1623,1629; Lamartiniere, J Mammary Gland Biol Neoplasia 2002;7:67,76). To address this topic, we selected MCF10A, a line of immortalized normal human breast epithelial cells as an in vitro model. An initial effort was made to optimize the cultural condition of MCF10A cells to promote the cell differentiation effect of insulin. Under this condition, TCDD clearly antagonized the action of insulin only in the presence of cholera toxin that is known to promote the differentiation of normal human breast epithelial cells. To test the hypothesis that TCDD-induced c-Src kinase activation is casually related to this compound's antagonistic action against insulin, we treated MCF10A cells with two c-Src blocking agents, an anti-Src antisense oligonucleotides blocker and a known specific inhibitor of c-Src kinase, PP-2 and studied the effect of insulin and TCDD on cell proliferation. The results showed that, in cells treated with either of these two c-Src blocking agents, the antagonistic effect of TCDD disappeared. It was also found that agents which specifically block the activation of ERK could also abrogate the action of TCDD to suppress insulin signaling. Together, these results indicate that the mechanism of the antagonistic action of TCDD on insulin signaling is mainly mediated through c-Src signaling through activation of ERK. © 2005 Wiley Periodicals, Inc. J Biochem Mol Toxicol 18:322,331, 2004; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/jbt.20040 [source]


Functional and molecular MR imaging of angiogenesis: Seeing the target, seeing it work

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue S39 2002
Michal NeemanArticle first published online: 16 JAN 200
Abstract Intensive research over the last years led to the discovery of multiple molecular pathways and intricate regulatory network controlling the growth and regression of blood vessels in general and angiogenesis in particular. The difficulties in elucidation of the regulation of angiogenesis, stems from the inherent complexity due to participation of many cell types, under a dominant impact of physiological and environmental effects of flow, perfusion, and oxygenation. Major advances were achieved with the use of sophisticated transgenic mice models engineered so as to provide spatially and temporally controlled expression of specific factors alone or in combination. In vivo analysis of these models frequently requires the use of non-invasive imaging modalities for measurement of functional parameters of the vasculature along with dynamic molecular information. Optical methods are extensively applied for the study of angiogenesis [Brown et al., 2001] but provide very limited tissue penetration. MRI offers the advantage of being non-invasive with uniform and relatively high spatial resolution for deep tissues. Multiple MRI approaches for monitoring angiogenesis were developed over the last years, each looking at a particular step in the process. The aim of this paper is to analyze the clinical, pharmaceutical, and biological needs for imaging of angiogenesis, and to critically evaluate the strengths and weaknesses of functional and molecular imaging for monitoring angiogenesis. The inherent problem of validation of different measures of angiogenesis, and the advantages and limitations associated with application of MRI based methods, as surrogates for other measurements of angiogenesis will be discussed. The terms molecular imaging and functional imaging are frequently loosely defined with a significant overlap between the two. For the sake of this paper we will apply a narrower definition of both terms, where molecular imaging will apply to methods directed towards detection of specific biological molecules that participate directly in (regulation of) a physiological process; while functional imaging will be used to describe those methods that aim to detect the physiological response to a defined (molecular) stimulus. J. Cell. Biochem. Suppl. 39: 11,17, 2002. © 2002 Wiley-Liss, Inc. [source]


Fragmentation model analysis of the observed atmospheric trajectory of the Tagish Lake fireball

METEORITICS & PLANETARY SCIENCE, Issue 2 2007
k CEPLECHA
An initial mass of 56,000 kg, derived from seismic and infrasound data by Brown et al. (2002), proved to be consistent with a very low value of intrinsic ablation coefficient of 0.0009 s2 km,2. The average residual of the best fit to the observed light curve was ±0.10 stellar magnitude. The apparent ablation coefficient varied from 0.0009 to 1.52 s2 km,2 with an average value of 0.054 s2 km,2 (determined by the gross fragmentation [GF] model). The FM found 33 individual fragmentation events during the penetration of the 56,000 kg initial mass of the Tagish Lake meteoroid through the atmosphere, with five of the events fragmenting more than 10% of the instantaneous mass of the main body. The largest event fragmented 88% of the mass of the main body at a height of 34.4 km. The velocity of the main body mass of 2660 kg at a height of 29.2 km (the last observed light) was 13.1 km/s. Strong fragmentation at heights lower than 29.2 km is very probable. The extreme fragmentation process of the Tagish Lake meteoroid puts its classification well outside the IIIB type in the direction of less cohesive bodies. The light curve could not be explained at all by making use of only the apparent ablation coefficient and apparent luminous efficiency. [source]


An analysis of the composite stellar population in M32,

MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 2 2009
P. Coelho
ABSTRACT We obtained long-slit spectra of high signal-to-noise ratio of the galaxy M32 with the Gemini Multi-Object Spectrograph at the Gemini-North telescope. We analysed the integrated spectra by means of full spectral fitting in order to extract the mixture of stellar populations that best represents its composite nature. Three different galactic radii were analysed, from the nuclear region out to 2 arcmin from the centre. This allows us to compare, for the first time, the results of integrated light spectroscopy with those of resolved colour,magnitude diagrams from the literature. As a main result we propose that an ancient and an intermediate-age population co-exist in M32, and that the balance between these two populations change between the nucleus and outside one effective radius (1reff) in the sense that the contribution from the intermediate population is larger at the nuclear region. We retrieve a smaller signal of a young population at all radii whose origin is unclear and may be a contamination from horizontal branch stars, such as the ones identified by Brown et al. in the nuclear region. We compare our metallicity distribution function for a region 1 to 2 arcmin from the centre to the one obtained with photometric data by Grillmair et al. Both distributions are broad, but our spectroscopically derived distribution has a significant component with [Z/Z,],,1, which is not found by Grillmair et al. [source]