Breakthrough Time (breakthrough + time)

Distribution by Scientific Domains


Selected Abstracts


Prediction of hemodialysis sorbent cartridge urea nitrogen capacity and sodium release from in vitro tests

HEMODIALYSIS INTERNATIONAL, Issue 2 2008
Benjamin P. ROSENBAUM
Abstract In sorbent-based hemodialysis, factors limiting a treatment session are urea conversion capacity and sodium release from the cartridge. In vitro experiments were performed to model typical treatment scenarios using various dialyzers and 4 types of SORBÔ sorbent cartridges. The experiments were continued to the point of column saturation with ammonium. The urea nitrogen removed and amount of sodium released in each trial were analyzed in a multi-variable regression against several variables: amount of zirconium phosphate (ZrP), dialysate flow rate (DFR), simulated blood flow rate (BFR), simulated patient whole-body fluid volume (V), initial simulated patient urea concentration (BUNi), dialyzer area permeability (KoA) product, initial dialysate sodium and bicarbonate (HCO3i) concentrations, initial simulated patient sodium (Nai), pH of ZrP, creatinine, breakthrough time, and average urea nitrogen concentration in dialysate. The urea nitrogen capacity (UNC) of various new SORBÔ columns is positively related to ZrP, BFR, V, BUNi, and ZrP pH and negatively to DFR with an R2adjusted=0.990. Two models are described for sodium release. The first model is related positively to DFR and V and negatively to ZrP, KoA product, and dialysate HCO3i with an R2adjusted=0.584. The second model incorporates knowledge of initial simulated patient sodium (negative relationship) and urea levels (negative relationship) in addition to the parameters in the first model with an R2adjusted=0.786. These mathematical models should allow for prediction of patient sodium profiles and the time of column urea saturation based on simple inputs relating to patient chemistries and the dialysis treatment. [source]


Solute transport through a deforming porous medium

INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 7 2002
Glen P. Peters
Abstract Solute transport through a porous medium is typically modelled assuming the porous medium is rigid. However, many applications exist where the porous medium is deforming, including, municipal landfill liners, mine tailings dams, and land subsidence. In this paper, mass balance laws are used to derive the flow and transport equations for a deforming porous medium. The equations are derived in both spatial and material co-ordinate systems. Solute transport through an engineered landfill liner is used as an illustrative example to show the differences between the theory for a rigid porous medium, and small and large deformation analysis of a deforming porous medium. It is found that the large deformation model produces shorter solute breakthrough times, followed by the small deformation model, and then the rigid porous medium model. It is also found that it is important to include spatial and temporal void ratio variations in the large deformation analysis. It is shown that a non-linear large deformation model may greatly reduce the solute breakthrough time, compared to a standard transport analysis typically employed by environmental engineers. Copyright © 2002 John Wiley & Sons, Ltd. [source]


Degradation of TCE with Iron: The Role of Competing Chromate and Nitrate Reduction

GROUND WATER, Issue 3 2000
Oliver Schlicker
This study evaluates the potential of using granular iron metal for the abiotic removal of the organic ground water pollutant trichloroethene (TCE) in the presence of the common inorganic co-contaminants chromate and nitrate, respectively. Our long-term column experiments indicate a competitive process between TCE dechlorination and reductive transformation of chromate and nitrate, which is reflected in a significantly delayed onset of TCE dechlorination. Delay times and therefore the ranges of the nonreactive flowpaths increased with increasing experimental duration, resulting in a migration of the contaminants through the iron metal treatment zone. The present investigation also indicates that the calculated migration rates of TCE and the added cocontaminants chromate and nitrate are linearly related to the initial content of the cocontaminants. With an average pore water velocity of 0.6 m/d and a surface area concentration of 0.55 m2/mL in the column, the calculated migration rates varled between 0.10 cm/d and 5.86 cm/d. The particular similarity between the values of TCE migration and the migration of the strong oxidants chromate and nitrate and the long-term steady state of the TCE dechlorination in the absence of the chromate and nitrate indicates that these competitive transformations are the driving force for the gradual passivation of the granular iron due to the buildup of an electrically insulating Fe(III)-oxyhydroxide. Based on these passivation processes, general formulae were developed that allow a simplified approximation of breakthrough times for the contaminants TCE, chromate, and nitrate. [source]


Solute transport through a deforming porous medium

INTERNATIONAL JOURNAL FOR NUMERICAL AND ANALYTICAL METHODS IN GEOMECHANICS, Issue 7 2002
Glen P. Peters
Abstract Solute transport through a porous medium is typically modelled assuming the porous medium is rigid. However, many applications exist where the porous medium is deforming, including, municipal landfill liners, mine tailings dams, and land subsidence. In this paper, mass balance laws are used to derive the flow and transport equations for a deforming porous medium. The equations are derived in both spatial and material co-ordinate systems. Solute transport through an engineered landfill liner is used as an illustrative example to show the differences between the theory for a rigid porous medium, and small and large deformation analysis of a deforming porous medium. It is found that the large deformation model produces shorter solute breakthrough times, followed by the small deformation model, and then the rigid porous medium model. It is also found that it is important to include spatial and temporal void ratio variations in the large deformation analysis. It is shown that a non-linear large deformation model may greatly reduce the solute breakthrough time, compared to a standard transport analysis typically employed by environmental engineers. Copyright © 2002 John Wiley & Sons, Ltd. [source]