| |||
Breakdown Rates (breakdown + rate)
Kinds of Breakdown Rates Selected AbstractsBreakdown of wood in the Agüera streamFRESHWATER BIOLOGY, Issue 11 2002Joserra Díez SUMMARY 1. Breakdown of wood was compared at three sites of the Agüera catchment (Iberian Peninsula): two oligotrophic first-order reaches (one under deciduous forest, the other under Eucalyptus globulus plantations) and one third-order reach under mixed forest, where concentration of dissolved nutrients was higher. 2. Branches (diameter = 3 cm, length = 10 cm) of oak (Quercus robur), alder (Alnus glutinosa), pine (Pinus radiata) and eucalyptus, plus prisms (2.5 × 2.5 × 10 cm) of alder heartwood were enclosed in mesh bags (1 cm mesh size) and placed in the streams. Mass loss was determined over 4.5 years, whereas nutrient, lignin and ergosterol were determined over 3 years. In order to describe fungal dynamics, ergosterol was also determined separately on the outer and inner parts of some branches. 3. Breakdown rates ranged from 0.0159 to 0.2706 year,1 with the third-order reach having the highest values whatever the species considered. The most rapid breakdown occurred in alder heartwood and the slowest in pine branches; breakdown rates of oak, eucalyptus and alder branches did not differ significantly. 4. The highest nitrogen and phosphorus contents were found in alder, followed by oak, while pine and eucalyptus had low values. During breakdown, all materials rapidly lost phosphorus, but nitrogen content remained constant or slightly increased. Lignin content remained similar. 5. Peaks of ergosterol ranged from 0.023 to 0.139 mg g,1 and were higher in alder than in other species in two of the three sites. The third-order reach generally had the greatest increase in ergosterol, especially in alder branches, eucalyptus and alder heartwood. The overall species/site pattern of fungal biomass was thus consistent with the observed differences in breakdown. 6. When compared with leaves of the same species decomposing at these sites, wood breakdown appeared to be less sensitive to the tree species but more sensitive to stream water chemistry. Although wood breakdown is slower and its inputs are lower than those of leaf litter, its higher resistance to downstream transport results in a relatively high standing stock and a significant contribution to the energy flux. [source] Variability of Organic Matter Processing in a Mediterranean Coastal LagoonINTERNATIONAL REVIEW OF HYDROBIOLOGY, Issue 5-6 2004Margarita Menéndez Abstract The spatial variability of plant organic matter processing was studied experimentally in a shallow coastal lagoon (Tancada lagoon, average depth: 37 cm, area: 1.8 km2) in the Ebro River Delta (NE Spain). To determine the effect of hydrology and sediment characteristics on plant organic matter processing, leaves of Phragmites australis at the end of its vegetative cycle and whole plants of Ruppia cirrhosa(Petagna) Grande, just abscised, were enclosed in litter bags. Two different mesh sizes (100 ,m and 2 mm) were used to study the effect of macroinvertebrates on decomposition. The bags were placed in the water column and approximately 15 cm above the sediment at 6 different locations in the lagoon. The experiment was performed twice, in autumn-winter and spring-summer. The effect of macroinvertebrates on decomposition rate was not significant in Tancada lagoon. Breakdown rates showed spatial differences only in spring-summer. In the autumn-winter experiment, the effect of strong wind masked the effects of environmental variables and hydrology on decomposition rate. In the spring-summer experiment, characterised by high stability of the water column, dissolved inorganic nitrogen (DIN) concentration in the water column and organic matter in the sediment were the main factors determining the variability of organic matter processing. A positive relationship was calculated between P. australis decomposition rate and dissolved inorganic nitrogen in spring-summer (r2 = 0.92, p < 0.001). (© 2004 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Is structure or function a better measure of the effects of water abstraction on ecosystem integrity?FRESHWATER BIOLOGY, Issue 10 2009RUSSELL G. DEATH Summary 1. Assessments of flow abstractions in streams often focus on changes to biological communities and in-stream physical characteristics, with little consideration for changes in ecosystem functioning. It is unclear whether functional indicators of ecosystem health may be useful for assessing the impacts of reduced discharge on small streams. 2. We used weirs and diversions to reduce stream discharge by over 89% in three small New Zealand streams (11,84 L s,1), ranging in water quality from pristine to moderately impaired. 3. We used both structural (benthic invertebrates) and functional (drifting invertebrates, leaf breakdown, coarse particulate organic matter (CPOM) retention and primary productivity) measures of ecosystem integrity to compare responses to water abstraction in before-after, control-impact designed experiments during summer 2005. 4. At the pristine site, the density of invertebrates, taxon richness, Macroinvertebrate Community Index (MCI), Quantitative MCI, percentage of Ephemeroptera, Plecoptera and Trichoptera individuals and percentage of filter-feeders decreased in response to reduced flows. Only taxon richness decreased at the mildly impaired stream, and reduced discharge had no effect on the invertebrate community at the stream with the lowest water quality. 5. We found that reduced discharge had little influence on the breakdown rate of willow leaves in mesh bags over 1 month. Primary productivity was also relatively insensitive to water abstraction. However, CPOM retention increased with decreased flows. Drift propensity of invertebrates increased at two sites but only within the first few days after flow reduction. 6. Structural measures of ecosystem integrity suggested that the impacts of water abstraction differed among streams of varying water quality, probably because of differences in the sensitivity of invertebrate assemblages in the three streams. In contrast, the three functional measures tested were generally less sensitive to water abstraction impacts, although understanding how stream ecosystems respond to water abstraction clearly requires that both are considered. [source] Does leaf quality mediate the stimulation of leaf breakdown by phosphorus in Neotropical streams?FRESHWATER BIOLOGY, Issue 4 2006MARCELO ARDÓN Summary 1. Lowland tropical streams have a chemically diverse detrital resource base, where leaf quality could potentially alter the effect of high nutrient concentrations on leaf breakdown. This has important implications given the extent and magnitude of anthropogenic nutrient loading to the environment. 2. Here, we examine if leaf quality (as determined by concentrations of cellulose, lignin and tannins) mediates the effects of high ambient phosphorus (P) concentration on leaf breakdown in streams of lowland Costa Rica. We hypothesised that P would have a stronger effect on microbial and insect processing of high- than of low-quality leaves. 3. We selected three species that represented extremes of quality as measured in leaves of eight common riparian species. Species selected were, from high- to low-quality: Trema integerrima > Castilla elastica > Zygia longifolia. We incubated single-species leaf packs in five streams that had natural differences in ambient P concentration (10,140 ,g soluble reactive phosphorus (SRP) L,1), because of variable inputs of solute-rich groundwater and also in a stream that was experimentally enriched with P (approximately 200 ,g SRP L,1). 4. The breakdown rate of all three species varied among the six streams: T. integerrima (k -values range: 0.0451,0.129 day,1); C. elastica (k -values range: 0.0064,0.021 day,1); and Z. longifolia (k -values range: 0.002,0.008 day,1). Both ambient P concentration and flow velocity had significant effects on the breakdown rate of the three species. 5. Results supported our initial hypothesis that litter quality mediates the effect of high ambient P concentration on leaf processing by microbes and insects. The response of microbial respiration, fungal biomass and invertebrate density to high ambient P concentration was greater in Trema (high quality) than in Castilla or Zygia (low quality). Variation in flow velocity, however, confounded our ability to determine the magnitude of stimulation of breakdown rate by P. 6. Cellulose and lignin appeared to be the most important factors in determining the magnitude of P-stimulation. Surprisingly, leaf secondary compounds did not have an effect. This contradicts predictions made by other researchers, regarding the key role of plant secondary compounds in affecting leaf breakdown in tropical streams. [source] Flow-substrate interactions create and mediate leaf litter resource patches in streamsFRESHWATER BIOLOGY, Issue 3 2006TRENT M. HOOVER Summary 1. The roles that streambed geometry, channel morphology, and water velocity play in the retention and subsequent breakdown of leaf litter in small streams were examined by conducting a series of field and laboratory experiments. 2. In the first experiment, conditioned red alder (Alnus rubra Bongard) leaves were released individually in three riffles and three pools in a second-order stream. The transport distance of each leaf was measured. Several channel and streambed variables were measured at each leaf settlement location and compared with a similar number of measurements taken at regular intervals along streambed transects (,reference locations'). Channel features (such as water depth) and substrate variables (including stone height, stone height-to-width ratio, and relative protrusion) were the most important factors in leaf retention. 3. In the second experiment, the role of settlement location and reach type in determining the rate of leaf litter breakdown was examined by placing individual conditioned red alder leaves in exposed and sheltered locations (on the upper and lower edges of the upstream face of streambed stones, respectively) in riffle and pool habitats. After 10 days, percent mass remaining of each leaf was measured. Generally, leaves broke down faster in pools than in riffles. However, the role of exposure in breakdown rate differed between reach types (exposed pool > sheltered pool > sheltered riffle > exposed riffle). 4. In the third experiment, the importance of substrate geometry on leaf litter retention was examined by individually releasing artificial leaves upstream of a series of substrate models of varying shape. Substrates with high-angle upstream faces (were vertical or close to vertical), and that had high aspect ratios (were tall relative to their width), retained leaves more effectively. 5. These results show that streambed morphology is an important factor in leaf litter retention and breakdown. Interactions between substrate and flow characteristics lead to the creation of detrital resource patchiness, and may partition leaf litter inputs between riffles and pools in streams at baseflow conditions. [source] A model of bovine tuberculosis in the badger Melesmeles: an evaluation of control strategiesJOURNAL OF APPLIED ECOLOGY, Issue 3 2001G.C. Smith Summary 1,An individual-based stochastic simulation model was used to investigate the control of bovine tuberculosis (TB) in the European badger Meles meles. Nearly all population and epidemiological parameters were derived from one study site, and the transmission of TB from badgers to cattle was included. The latter is an essential step if reactive badger control strategies are to be modelled. 2,The model appeared to underestimate slightly the rate of population recovery following widespread culling. This may have been due to simulating an isolated population with no immigration and no compensatory increase in fecundity. This should not affect the relative efficacy of each control strategy, but does require further investigation. 3,Of the historical methods of badger control, gassing and the ,clean ring' strategies were the most effective at reducing disease prevalence in the badger and cattle herd breakdown rates. These results agree with those of earlier models. 4,The proactive badger removal operation as part of the current field trial should cause a dramatic decrease in the number of cattle herd breakdowns, but also has the greatest effect on the badger population size. 5,The proactive use of a live test to detect TB, followed by vaccination, appears to reduce substantially cattle herd breakdowns and disease prevalence in the badger. 6,Three combined control strategies gave the best initial reduction in cattle herd breakdown rate and disease prevalence in the badger: (i) a proactive cull followed by reactive test and cull; (ii) a continued vaccination and proactive test and cull; and (iii) a continuous proactive test and cull. 7,The results of simulation models suggest that badger vaccination is a very good method of TB control. This is at odds with simple models and requires further investigation. [source] A comparative study of dispersing a polyamide 6 into a polypropylene melt in a Buss Kneader, continuous mixer, and modular intermeshing corotating and counter-rotating twin screw extrudersPOLYMER ENGINEERING & SCIENCE, Issue 4 2008Keungjin Shon We have made a study of the development of phase morphology of an immiscible blend(75/25)(polypropylene,polyamide-6) for different types of continuous mixers including (i) Buss Kneader, (ii and iii) modular intermeshing corotating and counter-rotating twin screw extruders, and (iv) NEX-T Kobelco Continuous Mixer. Comparisons are made using different screw configurations for each machine. Generally, in comparison of the different machines, the intermeshing counter-rotating twin screw extruder produced the finest dispersed morphology. Using a droplet breakup kinetic model, we interpreted the blend dispersed phase droplet breakdown rate and coalescence rate. In comparison with our earlier study of the continuous mixing of agglomerates of CaCO3 particles the polymer droplet breakup rate was smaller than that of the particle agglomerates and the coalescence rates of droplets were many times greater than the particle reagglomerates rates. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers [source] Environmental factors affecting Phragmites australis litter decomposition in Mediterranean and Black Sea transitional watersAQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS, Issue S1 2008F. Sangiorgio Abstract 1. Leaf litter decomposition rates in aquatic ecosystems are known to be related to many abiotic and biotic factors. 2. Field experiments were carried out during spring 2005 in 16 ecosystems, each with four sampling sites, using the litter bag technique to investigate the influence of abiotic factors on patterns of reed litter breakdown in different physiographic, hydrological and physico-chemical gradients occurring in transitional water ecosystems in the Eastern Mediterranean and Black Sea. 3. Significant differences in leaf litter decomposition were observed among the studied ecosystems along univariate gradients of tidal range, water temperature, salinity and sinuosity index. 4. Overall, 71% of variance in the litter breakdown rate was explained by the hydrological, physico-chemical and physiographic components. Specifically, tidal range, salinity and sinuosity index are among the key factors in the most commonly used typological schemes for classifying transitional water ecosystems (i.e. Confinement Concept and Venice System), due to their influence on abundance and distribution of benthic macroinvertebrates and other guilds. 5. The patterns observed at the regional scale of the study suggest that certain key abiotic factors are likely to play a major role as drivers of plant detritus decomposition processes, through their influence on the overall metabolism of microorganisms and benthic macroinvertebrates. 6. These observations have implications for the identification of reference conditions for transitional water ecosystems in the studied area, on which all processes of classification and conservation of their ecological status are based. Copyright © 2008 John Wiley & Sons, Ltd. [source] Influence of isolation on the recovery of pond mesocosms from the application of an insecticide.ENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 6 2007Abstract The immediate response and recovery of the macrobenthic communities of nonisolated and isolated freshwater outdoor 9 m3 mesocosms following an acute stress caused by the addition of deltamethrin were studied over a 14-month period. To discriminate between internal and external recovery mechanisms, half of the treated ponds were covered by 1-mm mesh lids that restricted aerial recolonization. Both structural (abundance of the different taxonomic groups) and functional (litter breakdown) parameters were monitored. Insects were broadly reduced in numbers by deltamethrin addition. In general, noninsect groups were not affected or increased in abundance in deltamethrin-treated ponds, probably because of relative insensitivity to deltamethrin, reduced predation, and lower competition for food. No major change in litter breakdown rates were seen, probably because of functional redundancy among the macrobenthic community. Chironominae larvae recovered in open, treated mesocosms 62 d after deltamethrin addition and most insect groups recovered 84 d after the treatment date. However, the presence of lids significantly reduced insect recovery rate, suggesting that it largely depends on the immigration of winged forms (i.e., external recovery) from surrounding non- or less affected systems. These results indicate that the recovery time of macrobenthic communities in an affected natural pond would depend on spatial characteristics of the landscape and also the season that exposure occurs. Isolated ecosystems would display posttreatment insect recovery dynamics very different from highly connected ones, evolving toward alternate pseudoequilibrium states, possibly with lower biodiversity but with preserved functionality. Consequences for higher tier risk assessment of pesticides are discussed. [source] Similar breakdown rates and benthic macroinvertebrate assemblages on native and Eucalyptus globulus leaf litter in Californian streamsFRESHWATER BIOLOGY, Issue 4 2010IGOR LA Summary 1.,Eucalyptus globulus, a tree species planted worldwide in many riparian zones, has been reported to affect benthic macroinvertebrates negatively. Although there is no consensus about the effects of Eucalyptus on aquatic macrobenthos, its removal is sometimes proposed as a means of ecological restoration. 2.,We combined the sampling of macroinvertebrates with measurement of the colonisation of leaf packs in mesh bags, to examine the effects of riparian Eucalyptus and its litter on benthic macroinvertebrates in three small streams in California, U.S.A. Each stream included one reach bordered by Eucalyptus (E-site) and a second bordered by native vegetation (N-site). 3.,The macrobenthos was sampled and two sets of litter bags were deployed at each site: one set with Eucalyptus litter (Euc-bags) and one with mixed native tree litter (Nat-bags) containing Quercus, Umbellularia, Acer and Alnus. Bags were exposed for 28, 56 and 90 days and this experiment was repeated in the autumn, winter and spring to account for effects of changing stream flow and insect phenology. 4.,Litter input (average dry mass: 950 g m,2 year,1 in E-sites versus 669 g m,2 year,1 in N-sites) was similar, although in-stream litter composition differed between E- and N-sites. Litter broke down at similar rates in Euc-bags and Nat-bags (0.0193 day,1 versus 0.0134 day,1), perhaps reflecting the refractory nature of some of the leaves of the native trees (Quercus agrifolia). 5.,Summary metrics for macroinvertebrates (taxon richness, Shannon diversity, pollution tolerance index) did not differ significantly between the E and N sites, or between Euc-bags and Nat-bags. No effect of exposure time or site was detected by ordination of the taxa sampled. However, distinct seasonal ordination clusters were observed in winter, spring and autumn, and one of the three streams formed a separate cluster. 6.,The presence of Eucalyptus was less important in explaining the taxonomic composition of the macrobenthos than either ,season' or ,stream'. Similarly, these same two factors (but not litter species) also helped explain the variation in leaf breakdown. We conclude that patches of riparian Eucalyptus and its litter have little effect on stream macrobenthos in this region. [source] Interactions between fauna and sediment control the breakdown of plant matter in river sedimentsFRESHWATER BIOLOGY, Issue 4 2010SIMON NAVEL Summary 1. A substantial portion of particulate organic matter (POM) is stored in the sediment of rivers and streams. Leaf litter breakdown as an ecosystem process mediated by microorganisms and invertebrates is well documented in surface waters. In contrast, this process and especially the implication for invertebrates in subsurface environments remain poorly studied. 2. In the hyporheic zone, sediment grain size distribution exerts a strong influence on hydrodynamics and habitability for invertebrates. We expected that the influence of shredders on organic matter breakdown in river sediments would be influenced strongly by the physical structure of the interstitial habitat. 3. To test this hypothesis, the influence of gammarids (shredders commonly encountered in the hyporheos) on degradation of buried leaf litter was measured in experimental systems (slow filtration columns). We manipulated the structure of the sedimentary habitat by addition of sand to a gravel-based sediment column to reproduce three conditions of accessible pore volume. Ten gammarids were introduced in columns together with litter bags containing alder leaves at a depth of 8 cm in sediment. Leaves were collected after 28 days to determine leaf mass loss and associated microbial activity (fungal biomass, bacterial abundance and glucosidase, xylosidase and aminopeptidase activities). 4. As predicted, the consumption of buried leaf litter by shredders was strongly influenced by the sediment structure. Effective porosity of 35% and 25% allowed the access to buried leaf litter for gammarids, whereas a lower porosity (12%) did not. As a consequence, leaf litter breakdown rates in columns with 35% and 25% effective porosity were twice as high as in the 12% condition. Microbial activity was poorly stimulated by gammarids, suggesting a low microbial contribution to leaf mass loss and a direct effect of gammarids through feeding activity. 5. Our results show that breakdown of POM in subsurface waters depends on the accessibility of food patches to shredders. [source] Resource quality and stoichiometric constraints on stream ecosystem functioningFRESHWATER BIOLOGY, Issue 5 2009SALLY HLADYZ Summary 1. Resource quality and stoichiometric imbalances in carbon : nutrient ratios between consumers and resources can influence key ecosystem processes. In many streams, this has important implications for food webs that are based largely upon the utilization of terrestrial leaf-litter, which varies widely among litter types in its value as a food source for detritivores and as a substrate for microbial decomposers. 2. We measured breakdown rates and macroinvertebrate colonization of leaf-litter from a range of native and exotic plants of differing resource quality and palatability to consumers [e.g. carbon : nitrogen : phosphorus (C : N : P) ratios, lignin and cellulose content], in a field experiment. We also measured C : N : P ratios of the principal leaf-shredding invertebrates, which revealed strong stoichiometric imbalances across trophic levels: C : N and C : P ratios typically differed by at least one order of magnitude between consumers and resources, whereas N : P imbalances were less marked. Application of the threshold elemental ratio approach, which integrates animal bioenergetics and body elemental composition in examining nutrient deficiency between consumers and resources, revealed less marked C : P imbalances than those based on the simpler arithmetic differences described above. 3. Litter breakdown rates declined as nutrient imbalances widened and resource quality fell, but they were independent of whether resources were exotic or native. The principal drivers of total, microbial and invertebrate-mediated breakdown rates were lignin : N, lignin : P and fungal biomass, respectively. However, multiple regression using orthogonal predictors yielded even more efficient models of litter breakdown, as consumers responded to more than one aspect of resource quality. For example, fungal biomass and litter C : N both influenced invertebrate-mediated breakdown. 4. Large stoichiometric imbalances and changes in resource quality are likely to have serious consequences for stream ecosystem functioning, especially when riparian zones have been invaded by exotic plant species whose chemical composition differs markedly from that of the native flora. Consequently, the magnitude and direction of change in breakdown rates and, thus, resource depletion, will be driven to a large extent by the biochemical traits (rather than taxonomic identity per se) of the resident and invading flora. [source] Stream food web response to a salmon carcass analogue addition in two central Idaho, U.S.A. streamsFRESHWATER BIOLOGY, Issue 3 2008ANDRE E. KOHLER Summary 1. Pacific salmon and steelhead once contributed large amounts of marine-derived carbon, nitrogen and phosphorus to freshwater ecosystems in the Pacific Northwest of the United States of America (California, Oregon, Washington and Idaho). Declines in historically abundant anadromous salmonid populations represent a significant loss of returning nutrients across a large spatial scale. Recently, a manufactured salmon carcass analogue was developed and tested as a safe and effective method of delivering nutrients to freshwater and linked riparian ecosystems where marine-derived nutrients have been reduced or eliminated. 2. We compared four streams: two reference and two treatment streams using salmon carcass analogue(s) (SCA) as a treatment. Response variables measured included: surface streamwater chemistry; nutrient limitation status; carbon and nitrogen stable isotopes; periphyton chlorophyll a and ash-free dry mass (AFDM); macroinvertebrate density and biomass; and leaf litter decomposition rates. Within each stream, upstream reference and downstream treatment reaches were sampled 1 year before, during, and 1 year after the addition of SCA. 3. Periphyton chlorophyll a and AFDM and macroinvertebrate biomass were significantly higher in stream reaches treated with SCA. Enriched stable isotope (,15N) signatures were observed in periphyton and macroinvertebrate samples collected from treatment reaches in both treatment streams, indicating trophic transfer from SCA to consumers. Densities of Ephemerellidae, Elmidae and Brachycentridae were significantly higher in treatment reaches. Macroinvertebrate community composition and structure, as measured by taxonomic richness and diversity, did not appear to respond significantly to SCA treatment. Leaf breakdown rates were variable among treatment streams: significantly higher in one stream treatment reach but not the other. Salmon carcass analogue treatments had no detectable effect on measured water chemistry variables. 4. Our results suggest that SCA addition successfully increased periphyton and macroinvertebrate biomass with no detectable response in streamwater nutrient concentrations. Correspondingly, no change in nutrient limitation status was detected based on dissolved inorganic nitrogen to soluble reactive phosphorus ratios (DIN/SRP) and nutrient-diffusing substrata experiments. Salmon carcass analogues appear to increase freshwater productivity. 5. Salmon carcass analogues represent a pathogen-free nutrient enhancement tool that mimics natural trophic transfer pathways, can be manufactured using recycled fish products, and is easily transported; however, salmon carcass analogues should not be viewed as a replacement for naturally spawning salmon and the important ecological processes they provide. [source] Litter decomposition in a Cerrado savannah stream is retarded by leaf toughness, low dissolved nutrients and a low density of shreddersFRESHWATER BIOLOGY, Issue 8 2007J. F. GONÇALVES JR Summary 1. To assess whether the reported slow breakdown of litter in tropical Cerrado streams is due to local environmental conditions or to the intrinsic leaf characteristics of local plant species, we compared the breakdown of leaves from Protium brasiliense, a riparian species of Cerrado (Brazilian savannah), in a local and a temperate stream. The experiment was carried out at the time of the highest litter fall in the two locations. An additional summer experiment was conducted in the temperate stream to provide for similar temperature conditions. 2. The breakdown rates (k) of P. brasiliense leaves in the tropical Cerrado stream ranged from 0.0001 to 0.0008 day,1 and are among the slowest reported. They were significantly (F = 20.12, P < 0.05) lower than in the temperate stream (0.0046,0.0055). The maximum ergosterol content in decomposing leaves in the tropical Cerrado stream was 106 ,g g,1, (1.9% of leaf mass) measured by day 75, which was lower than in the temperate stream where maximum ergosterol content of 522 ,g g,1 (9.5% of leaf mass) was achieved by day 30. The ATP content, as an indicator of total microbial biomass, was up to four times higher in the tropical Cerrado than in the temperate stream (194.0 versus 49.4 nmoles g,1). 3. Unlike in the temperate stream, leaves in the tropical Cerrado were not colonised by shredder invertebrates. However, in none of the experiments did leaves exposed (coarse mesh bags) and unexposed (fine mesh bags) to invertebrates differ in breakdown rates (F = 1.15, P > 0.05), indicating that invertebrates were unable to feed on decomposing P. brasiliense leaves. 4. We conclude that the slow breakdown of P. brasiliense leaves in the tropical Cerrado stream was because of the low nutrient content in the water, particularly nitrate (0.05 mgN L,1), which slows down fungal activity and to the low density of invertebrates capable of using these hard leaves as an energy source. [source] Breakdown of wood in the Agüera streamFRESHWATER BIOLOGY, Issue 11 2002Joserra Díez SUMMARY 1. Breakdown of wood was compared at three sites of the Agüera catchment (Iberian Peninsula): two oligotrophic first-order reaches (one under deciduous forest, the other under Eucalyptus globulus plantations) and one third-order reach under mixed forest, where concentration of dissolved nutrients was higher. 2. Branches (diameter = 3 cm, length = 10 cm) of oak (Quercus robur), alder (Alnus glutinosa), pine (Pinus radiata) and eucalyptus, plus prisms (2.5 × 2.5 × 10 cm) of alder heartwood were enclosed in mesh bags (1 cm mesh size) and placed in the streams. Mass loss was determined over 4.5 years, whereas nutrient, lignin and ergosterol were determined over 3 years. In order to describe fungal dynamics, ergosterol was also determined separately on the outer and inner parts of some branches. 3. Breakdown rates ranged from 0.0159 to 0.2706 year,1 with the third-order reach having the highest values whatever the species considered. The most rapid breakdown occurred in alder heartwood and the slowest in pine branches; breakdown rates of oak, eucalyptus and alder branches did not differ significantly. 4. The highest nitrogen and phosphorus contents were found in alder, followed by oak, while pine and eucalyptus had low values. During breakdown, all materials rapidly lost phosphorus, but nitrogen content remained constant or slightly increased. Lignin content remained similar. 5. Peaks of ergosterol ranged from 0.023 to 0.139 mg g,1 and were higher in alder than in other species in two of the three sites. The third-order reach generally had the greatest increase in ergosterol, especially in alder branches, eucalyptus and alder heartwood. The overall species/site pattern of fungal biomass was thus consistent with the observed differences in breakdown. 6. When compared with leaves of the same species decomposing at these sites, wood breakdown appeared to be less sensitive to the tree species but more sensitive to stream water chemistry. Although wood breakdown is slower and its inputs are lower than those of leaf litter, its higher resistance to downstream transport results in a relatively high standing stock and a significant contribution to the energy flux. [source] Electron Transport System (ETS) Activity in Alder Leaf Litter in Two Contrasting Headwater StreamsINTERNATIONAL REVIEW OF HYDROBIOLOGY, Issue 4-5 2007Tadeusz Fleituch Abstract Decomposition rates, carbon and nitrogen concentrations and respiration electron transport (ETS) activity in alder leaf litter were examined by bag exposition method in two contrasting 2nd order streams. Oberer Seebach, Austria (alpine, limestone, karstic) and Goscibia, Poland (sub mountain, flysh) contrasted in catchment geology, channel hydrology, thermal regime and water chemistry. Despite differences in water temperature, the breakdown rates did not show statistical differences. However, the C:N ratio in alder leaf litter varied significantly between two sites. The potential ETS activity was significantly higher in the colder Goscibia and weakly related to stream thermal regimes. The effect of temperature on ETS of alder leaves was not the dominating factor. It was masked by variation of other factors like stream chemistry and the contribution of fine sediments, which are related to stream morphology and channel hydrology. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] A model of bovine tuberculosis in the badger Melesmeles: an evaluation of control strategiesJOURNAL OF APPLIED ECOLOGY, Issue 3 2001G.C. Smith Summary 1,An individual-based stochastic simulation model was used to investigate the control of bovine tuberculosis (TB) in the European badger Meles meles. Nearly all population and epidemiological parameters were derived from one study site, and the transmission of TB from badgers to cattle was included. The latter is an essential step if reactive badger control strategies are to be modelled. 2,The model appeared to underestimate slightly the rate of population recovery following widespread culling. This may have been due to simulating an isolated population with no immigration and no compensatory increase in fecundity. This should not affect the relative efficacy of each control strategy, but does require further investigation. 3,Of the historical methods of badger control, gassing and the ,clean ring' strategies were the most effective at reducing disease prevalence in the badger and cattle herd breakdown rates. These results agree with those of earlier models. 4,The proactive badger removal operation as part of the current field trial should cause a dramatic decrease in the number of cattle herd breakdowns, but also has the greatest effect on the badger population size. 5,The proactive use of a live test to detect TB, followed by vaccination, appears to reduce substantially cattle herd breakdowns and disease prevalence in the badger. 6,Three combined control strategies gave the best initial reduction in cattle herd breakdown rate and disease prevalence in the badger: (i) a proactive cull followed by reactive test and cull; (ii) a continued vaccination and proactive test and cull; and (iii) a continuous proactive test and cull. 7,The results of simulation models suggest that badger vaccination is a very good method of TB control. This is at odds with simple models and requires further investigation. [source] Evaluation of macrofaunal effects on leaf litter breakdown rates in aquatic and terrestrial habitatsAUSTRAL ECOLOGY, Issue 6 2006AUGUSTO C. DE A. RIBAS Abstract Decomposition of the organic matter is a key process in the functioning of aquatic and terrestrial ecosystems, although different factors influence processing rates between and within these habitats. Most patterns were described for temperate regions, with fewer studies in tropical, warmer sites. In this study, we carried out a factorial experiment to compare processing rates of mixed species of leaf litter between terrestrial and aquatic habitats at a tropical site, using ,ne and coarse mesh cages to allow or prevent colonization by macroinvertebrates. The experiment was followed for 10 weeks, and loss of leaf litter mass through time was evaluated using exponential models. We found no interaction between habitat and mesh size and leaf litter breakdown rates did not differ between ,ne and coarse mesh cages, suggesting that macroinvertebrates do not influence leaf litter decomposition in either habitat at our studied site. Leaf breakdown rates were faster in aquatic than in terrestrial habitats and the magnitude of these differences were comparable to studies in temperate regions, suggesting that equivalent factors can influence between-habitat differences detected in our study. [source] |