| |||
Abiotic Stress Tolerance (abiotic + stress_tolerance)
Selected AbstractsJuvenile shrubs show differences in stress tolerance, but no competition or facilitation, along a stress gradientJOURNAL OF ECOLOGY, Issue 1 2000Lisa A. Donovan Summary 1,We investigated experimentally differences in abiotic stress tolerance and the effects of plant,plant interactions for two desert shrubs, Chrysothamnus nauseosus and Sarcobatus vermiculatus, along a soil salinity (NaCl) and boron (B) gradient at Mono Lake, California, USA. Based on differences in natural distribution, and the classical expectation of a trade-off between competitive ability and stress tolerance, we hypothesized that (i) Chrysothamnus would have greater competitive ability than Sarcobatus at the low salinity end of the gradient, and that (ii) Sarcobatus would be more stress tolerant than Chrysothamnus. 2,Juvenile target plants of Chrysothamnus and Sarcobatus were planted into four sites along the gradient. Biomass was determined by destructive harvests over two growing seasons. At each site, interspecific relative competitive ability was assessed as the effect of Sarcobatus neighbours on Chrysothamnus targets compared to the effect of Chrysothamnus neighbours on Sarcobatus targets. Stress tolerance was assessed as the ability of each species to survive and grow, in the absence of neighbours, at different sites along the gradient. 3,The two species did not differ in the relative strength of plant,plant interactions, providing no support for the expectation that Chrysothamnus had greater competitive ability than Sarcobatus. Furthermore, there was no evidence for competition or facilitation, either interspecific or intraspecific, at any site in either year of the study. However, fertilization treatments demonstrated nutrient limitations, soil water reached limiting levels and root systems of targets and neighbours overlapped substantially. It is therefore surprising that plant,plant interactions among juveniles apparently play little role in the growth and survival of shrubs in this saline desert habitat. 4,Sarcobatus was more stress tolerant than Chrysothamnus and the two species performed optimally at different sites along the gradient. Sarcobatus juveniles grew best at the two most saline sites and survived at all sites, whereas Chrysothamnus juveniles grew best at a low-salinity site and did not survive at the most saline site. The difference in site of optimal performance may be due to differences in nutrient limitations or to interactions between nutrient availability and sodium (Na) and B tolerance. [source] Abscisic Acid-mediated Epigenetic Processes in Plant Development and Stress ResponsesJOURNAL OF INTEGRATIVE PLANT BIOLOGY, Issue 10 2008Viswanathan Chinnusamy Abstract Abscisic acid (ABA) regulates diverse plant processes, growth and development under non-stress conditions and plays a pivotal role in abiotic stress tolerance. Although ABA-regulated genetic processes are well known, recent discoveries reveal that epigenetic processes are an integral part of ABA-regulated processes. Epigenetic mechanisms, namely, histone modifications and cytosine DNA methylation-induced modification of genome give rise to epigenomes, which add diversity and complexity to the genome of organisms. Histone monoubiquitination appears to regulate ABA levels in developing seeds through histone H2B monoubiquitination. ABA and H2B ubiquitination dependent chromatin remodeling regulate seed dormancy. Transcription factor networks necessary for seed maturation are repressed by histone deacetylases (HDACs)-dependent and PICKLE chromatin remodeling complexes (CRCs), whereas ABA induces the expression of these genes directly or through repression of HDACs. Abiotic stress-induced ABA regulates stomatal response and stress-responsive gene expression through HDACs and HOS15-dependent histone deacetylation, as well as through the ATP-dependent SWITCH/SUCROSE NONFERMENTING CRC. ABA also probably regulates the abiotic stress response through DNA methylation and short interfering RNA pathways. Further studies on ABA-regulated epigenome will be of immense use to understand the plant development, stress adaptation and stress memory. [source] Is the Rehydrin TrDr3 from Tortula ruralis Associated with Tolerance to Cold, Salinity, and Reduced pH?PLANT BIOLOGY, Issue 3 2005HdeD from Escherichia coli in Response to Abiotic Stress, Physiological Evaluation of the TrDr3 -Orthologue Abstract: We have employed EST analysis in the resurrection moss Tortula ruralis to discover genes that control vegetative desiccation tolerance and describe the characterization of the EST-derived cDNA TrDr3 (Tortula ruralis desiccation-stress related). The deduced polypeptide TRDR3 has a predicted molecular mass of 25.5 kDa, predicted pI of 6.7, and six transmembrane helical domains. Preliminary expression analyses demonstrate that the TrDr3 transcript ratio increases in response to slow desiccation relative to the hydrated control in both total and polysomal mRNA (mRNP fraction), which classifies TrDr3 as a rehydrin. Bioinformatic searches of the electronic databases reveal that Tortula TRDR3 shares significant similarities to the hdeD gene product (HNS-dependent expression) from Escherichia coli. The function of the HdeD protein in E. coli is unknown, but it is postulated to be involved in a mechanism of acid stress defence. To establish the role of E. coli HdeD in abiotic stress tolerance, we determined the log survival percentage from shaking cultures of wild-type bacteria and the isogenic hdeD deletion strain (,hdeD) in the presence of low temperature (28 °C), elevated NaCl (5 % (w/v)), or decreased pH (4.5), or all treatments simultaneously. The ,hdeD deletion strain was less sensitive, as compared to wild-type E. coli, in response to decreased pH (p > 0.009), and the combination of all three stresses (p > 0.0001). [source] Associations of simple sequence repeats with quantitative trait variation including biotic and abiotic stress tolerance in Hordeum spontaneumPLANT BREEDING, Issue 4 2003V. Ivandic abstract A total of 33 simple sequence repeats (SSRs) was analyzed in 52 genotypes of Hordeum spontaneum originally collected from two different soil types (Terra rossa and Basalt) at Tabigha in Israel. Data on the performance of developmental, morphological, and yield-related traits under well-watered control and water-stress conditions were available from previous experimentation, and powdery mildew susceptibility was scored. Regression analyses based on SSR allele class differences were performed. Highly significant associations were detected at the SSR loci Bmac181 (on chromosome 4H) and Bmac316 (6H) for water -stress tolerance and powdery mildew resistance, respectively. The study shows that association mapping using SSRs and genetically diverse germplasm provides an effective means of relating genotypes to complex quantitative phenotypes. [source] Effects of selection for resistance to Sesamia nonagrioides on maize yield, performance and stability under infestation with Sesamia nonagrioides and Ostrinia nubilalis in SpainANNALS OF APPLIED BIOLOGY, Issue 3 2010G. Sandoya A maize synthetic population was improved for resistance to the Mediterranean corn borer (MCB, Sesamia nonagrioides) while maintaining yield. The objectives of this research were to investigate whether yield and yield stability of the maize synthetic population named EPS12 were affected by selection for MCB resistance; also to determine which genotypic and environmental covariates could explain the genotype (G), environment (E) and genotype × environment (GE) effects for yield under corn borer infestation. Plants from three cycles of selection and their testcrosses to three inbred testers (A639, B93 and EP42) were evaluated at two locations in 2 years, under MCB and European corn borer infestations. After selection EPS12 was a more stable genotype. Hybrids derived from crosses between B93 and inbreds obtained from the initial cycles of selection could be recommended for cultivation in northern Spain. The yield of crosses between cycles of selection and testers increased when there were fewer days with temperatures >25°C and higher mean maximum temperatures. Differences in yield among these genotypes were mostly explained by resistance to corn borer attack. In general, among EPS12-derived materials, genetic characteristics that contribute to increased grain yield were also responsible for increased abiotic stress tolerance. [source] DROUGHT STRESS: Comparative Time Course Action of the Foliar Applied Glycinebetaine, Salicylic Acid, Nitrous Oxide, Brassinosteroids and Spermine in Improving Drought Resistance of RiceJOURNAL OF AGRONOMY AND CROP SCIENCE, Issue 5 2010M. Farooq Abstract Worldwide rice productivity is being threatened by increased endeavours of drought stress. Among the visible symptoms of drought stress, hampered water relations and disrupted cellular membrane functions are the most important. Exogenous use of polyamines (PAs), salicylic acid (SA), brassinosteroids (BRs), glycinebetaine (GB) and nitrous oxide (NO) can induce abiotic stresses tolerance in many crops. In this time course study, we appraised the comparative role of all these substances to improve the drought tolerance in rice (Oryza sativa L.) cultivar Super-Basmati. Plants were subjected to drought stress at four leaf stage (4 weeks after emergence) by maintaining soil moisture at 50 % of field capacity. Pre-optimized concentrations of GB (150 mg l,1), SA (100 mg l,1), NO (100 ,mol l,1 sodium nitroprusside as NO donor), BR (0.01 ,m 24-epibrassinolide) and spermine (Spm; 10 ,m) were foliar sprayed at five-leaf stage (5 weeks after emergence). There were two controls both receiving no foliar spray, viz. well watered (CK1) and drought stressed (CK2). There was substantial reduction in allometric response of rice, gas exchange and water relation attributes by drought stress. While drought stress enhanced the H2O2, malondialdehyde (MDA) and relative membrane permeability, foliar spray of all the chemicals improved growth possibly because of the improved carbon assimilation, enhanced synthesis of metabolites and maintenance of tissue water status. Simultaneous reduction in H2O2 and MDA production was also noted in the plants treated with these substances. Drought tolerance was sturdily associated with the greater tissue water potential, increased synthesis of metabolites and enhanced capacity of antioxidant system. Of all the chemicals, foliar spray with Spm was the most effective followed by BR. [source] |